1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Nanotechnology Research Centre (NRC), University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
    2 Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
    3 National Institute for Laser, Plasma and Radiation Physics, Str. Atomistilor, P.O. Box MG-36, 077125 Magurele, Romania
    4 Nanostructured Materials Microscopy Group (NMMG), Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
    5 Research Center of Ultrafast Science, Department of Physics, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
    a) Author to whom correspondence should be addressed. Electronic mail: zervos@ucy.ac.cy
    APL Mat. 2, 056104 (2014); http://dx.doi.org/10.1063/1.4875457
/content/aip/journal/aplmater/2/5/10.1063/1.4875457
1.
1. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, Sol. Energy Mater. Sol. Cells 90, 2129 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.12.005
2.
2. R. Hyam, R. K. Bhosale, W. Lee, S. H. Han, and B. Hannoyer, J. Nanosci. Nanotechnol. 10, 5894 (2010).
http://dx.doi.org/10.1166/jnn.2010.2475
3.
3. A. Hichou, M. Addou, M. Mansori, and J. Ebothé, Sol. Energy Mater. Sol. Cells 93, 609 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.014
4.
4. Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89,123102 (2006).
http://dx.doi.org/10.1063/1.2345278
5.
5. J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, and X. D. Chen, Nanotechnology 22,195706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/19/195706
6.
6. Y. Y. Kee, S. S. Tan, T. K. Yong, C. H. Nee, S. S. Yap, T. Y. Tou, G. Sáfrán, Z. E. Horváth, J. P. Moscatello, and Y. K. Yap, Nanotechnology 23,025706 (2012).
http://dx.doi.org/10.1088/0957-4484/23/2/025706
7.
7. C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. S. Torres, Nat. Nanotechnol. 4, 239 (2009).
http://dx.doi.org/10.1038/nnano.2008.418
8.
8. H. K. Yu, W. J. Dong, G. H. Jung, and J. L. Lee, ACS Nano 5,8026 (2011).
http://dx.doi.org/10.1021/nn2025836
9.
9. N. Horiuchi, Nat. Photonics 5, 332 (2011).
http://dx.doi.org/10.1038/nphoton.2011.115
10.
10. M. O. Orlandi, R. Aguiar, A. C. Lanfredi, E. Longo, J. A. Varela, and E. R. Leite, Appl. Phys. A. 80, 23 (2005).
http://dx.doi.org/10.1007/s00339-004-3027-x
11.
11. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, and M. Neil, Nano Lett. 3, 925 (2003).
http://dx.doi.org/10.1021/nl0342186
12.
12. G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A. Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, and T. Kawai, J. Am. Chem. Soc. 135,7033 (2013).
http://dx.doi.org/10.1021/ja401926u
13.
13. S. P. Chiu, H. F. Chung, Y. H. Lin, J. J. Kai, F. R. Chen, and J. J. Lin, Nanotechnology 20, 105203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105203
14.
14. W. C. Chang, C. H. Kuo, C. C. Juan, P. J. Lee, Y. L. Chueh, and S. J. Lin, Nanoscale Res. Lett. 7, 684 (2012).
http://dx.doi.org/10.1186/1556-276X-7-684
15.
15. M. Zervos, A. Othonos, D. Tsokkou, J. Kioseoglou, E. Pavlidou, and Ph. Komninou, Phys. Status Solidi A 210, 226 (2013).
http://dx.doi.org/10.1002/pssa.201200403
16.
16. G. B. Gonzales, J. B. Cohen, J. H. Hwang, T. O. Mason, J. P. Hodges, and J. D. Jorgensen, J. Appl. Phys. 89, 2550 (2001).
http://dx.doi.org/10.1063/1.1341209
17.
17. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niderberger, and J. Ba, Thin Solid Films 515, 8637 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.03.166
18.
18. G. Frank and H. Kostlin, Appl. Phys. A. 27, 197 (1982).
http://dx.doi.org/10.1007/BF00619080
19.
19. D. Tsokou, M. Zervos, and A. Othonos, J. Appl. Phys. 106, 084307 (2009).
http://dx.doi.org/10.1063/1.3245339
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4875457
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4875457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4875457
2014-05-12
2014-07-29

Abstract

Indium tin oxide nanowires were grown by the reaction of In and Sn with O at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped InO nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO and suppression of InO permitting compositional and structural tuning from SnO to InO which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4875457.html;jsessionid=1dkfk5lyxyjd1.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4875457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4875457
10.1063/1.4875457
SEARCH_EXPAND_ITEM