1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/5/10.1063/1.4876638
1.
1. B. B. Owens, J. Power Sources 90, 2 (2000).
http://dx.doi.org/10.1016/S0378-7753(00)00436-5
2.
2. Q. Quartarone and P. Mustarelli, Chem. Soc. Rev. 40, 2525 (2011).
http://dx.doi.org/10.1039/c0cs00081g
3.
3. R. Kanno and M. Maruyama, J. Electrochem. Soc. 148, A742 (2001).
http://dx.doi.org/10.1149/1.1379028
4.
4. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, Nat. Mater. 10, 682 (2011).
http://dx.doi.org/10.1038/nmat3066
5.
5. Y. Inaguma, C. Liquan, M. Itho, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, Solid State Commun. 86, 689 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90841-A
6.
6. B. V. R. Chowdari, K. Radhakrishnan, K. A. Thomasmand, and G. V. S. Rao, Mater. Res. Bull. 24, 221 (1989).
http://dx.doi.org/10.1016/0025-5408(89)90129-3
7.
7. J.-P. Soulie, G. Renaudin, R. Cerny, and K. Yvon, J. Alloys Compd. 346, 200 (2002).
http://dx.doi.org/10.1016/S0925-8388(02)00521-2
8.
8. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, and H. Takamura, Appl. Phys. Lett. 91, 224103 (2007).
http://dx.doi.org/10.1063/1.2817934
9.
9. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, and S. Orimo, J. Am. Chem. Soc. 131, 894 (2009).
http://dx.doi.org/10.1021/ja807392k
10.
10. R. Miyazaki, T. Karahashi, N. Kumatani, Y. Noda, M. Ando, H. Takamura, M. Matsuo, S. Orimo, and H. Maekawa, Solid State Ionics 192, 143 (2011).
http://dx.doi.org/10.1016/j.ssi.2010.05.017
11.
11. K. Takahashi, K. Hattori, T. Yamazaki, K. Takada, M. Matsuo, S. Orimo, H. Maekawa, and H. Takamura, J. Power Sources 226, 61 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.10.079
12.
12. G. Suzuki, K. Kami, H. Takamura, S. Orimo, H. Maekawa, and T. Maekawa, U.S. patent 0,251,871 A1 (4 October 2012).
13.
13. T. Ikeshoji, E. Tsuchida, K. Ikeda, M. Matsuo, H-W. Li, Y. Kawazoe, and S. Orimo, Appl. Phys. Lett. 95, 221901 (2009).
http://dx.doi.org/10.1063/1.3264953
14.
14. V. Epp and M. Wilkening, Phys. Rev. B 82, 020301 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.020301
15.
15. C. W. F. T. Pistorius, Z. Phys. Chem. Neue Folge 88, S253 (1974).
http://dx.doi.org/10.1524/zpch.1974.88.5_6.253
16.
16. H. Takamura, Y. Kuronuma, H. Maekawa, M. Matsuo, and S. Orimo, Solid State Ionics 192, 118 (2011).
http://dx.doi.org/10.1016/j.ssi.2010.02.011
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4876638 for SEM/EDX analysis and electrical conductivity of sintered LiBH4·KI (50 mol. % LiBH4) and the thermodynamic properties of KI–LiBH4 pseudo binary system. [Supplementary Material]
18.
18. B. J. H. Jackson and D. Young, J. Phys. Chem. Solids 30, 1973 (1969).
http://dx.doi.org/10.1016/0022-3697(69)90174-7
19.
19. M. Meyer, V. Jaenisch, P. Maass, and A. Bunde, Phys. Rev. Lett. 76, 2338 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2338
20.
20. R. J. Charles, J. Am. Ceram. Soc. 48, 432 (1965).
http://dx.doi.org/10.1111/j.1151-2916.1965.tb14784.x
21.
21. J. T. Kummer, Prog. Solid State Chem. 7, 141 (1972).
http://dx.doi.org/10.1016/0079-6786(72)90007-6
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4876638
Loading
/content/aip/journal/aplmater/2/5/10.1063/1.4876638
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/5/10.1063/1.4876638
2014-05-20
2014-12-28

Abstract

The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH, more suitable to the high rate condition. We synthesized the H.P. form of LiBH under ambient pressure by doping LiBH with the KI lattice by sintering. The formation of a KI - LiBH solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/5/1.4876638.html;jsessionid=7c2o738e0k602.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/5/10.1063/1.4876638&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/5/10.1063/1.4876638
10.1063/1.4876638
SEARCH_EXPAND_ITEM