1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The thermal conductivity of clustered nanocolloids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/6/10.1063/1.4880975
1.
1. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, J. Appl. Phys. 113, 011301 (2013).
http://dx.doi.org/10.1063/1.4754271
2.
2. S. K. Das, S. U. S. Choi, and H. E. Patel, Heat Transfer Eng. 27, 3 (2006).
http://dx.doi.org/10.1080/01457630600904593
3.
3. J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. V. Tolmachev, P. Keblinski, L. Wen Hu, J. L. Alvarado et al., J. Appl. Phys. 106, 094312 (2009).
http://dx.doi.org/10.1063/1.3245330
4.
4. R. Prasher, P. Bhattacharya, and P. E. Phelan, Phys. Rev. Lett. 94, 025901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.025901
5.
5. R. Prasher, P. E. Phelan, and P. Bhattacharya, Nano Lett. 6, 1529 (2006).
http://dx.doi.org/10.1021/nl060992s
6.
6. M. Vladkov and J.-L. Barrat, Nano Lett. 6, 1224 (2006).
http://dx.doi.org/10.1021/nl060670o
7.
7. J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu, and G. Chen, Nano Lett. 9, 4128 (2009).
http://dx.doi.org/10.1021/nl902358m
8.
8. R. Prasher, Nano Lett. 5, 2155 (2005).
http://dx.doi.org/10.1021/nl051710b
9.
9. R. Zheng, J. Gao, J. Wang, S.-P. Feng, H. Ohtani, J. Wang, and G. Chen, Nano Lett. 12, 188 (2012).
http://dx.doi.org/10.1021/nl203276y
10.
10. J. Eapen, W. C. Williams, J. Buongiorno, L.-W. Hu, S. Yip, R. Rusconi, and R. Piazza, Phys. Rev. Lett. 99, 095901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.095901
11.
11. J. Eapen, J. Li, and S. Yip, Phys. Rev. Lett. 98, 028302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.028302
12.
12. J. K. Maxwell, Treatise on Electricity and Magnetism (Dover, 1954), Vol. 1, reprint of the 1891 edition.
13.
13. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
http://dx.doi.org/10.1063/1.1728579
14.
14. J. Eapen, R. Rusconi, R. Piazza, and S. Yip, J. Heat Transfer 132, 102402 (2010).
http://dx.doi.org/10.1115/1.4001304
15.
15. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006).
http://dx.doi.org/10.1063/1.2360229
16.
16. J. Philip, P. D. Shima, and B. Raj, Appl. Phys. Lett. 91, 203108 (2007).
http://dx.doi.org/10.1063/1.2812699
17.
17. J. Philip, P. D. Shima, and B. Raj, Appl. Phys. Lett. 92, 043108 (2008).
http://dx.doi.org/10.1063/1.2838304
18.
18. D. W. Schaefer, Science 243, 1023 (1989).
http://dx.doi.org/10.1126/science.243.4894.1023
19.
19. E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, Phys. Rev. E 76, 061203 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.061203
20.
20. N. Vargaftik, L. Filippov, A. Tarzimanov, and E. Totskii, Handbook of Thermal Conductivity of Liquids and Gases, 1st ed. (CRC, 1993).
21.
21. L. T. Zhuravlev, Colloids Surf., A 173, 1 (2000).
http://dx.doi.org/10.1016/S0927-7757(00)00556-2
22.
22. R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, 1979).
23.
23. C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.2804
24.
24. P. Keblinski, R. Prasher, and J. Eapen, J. Nanoparticle Res. 10, 1089 (2008).
http://dx.doi.org/10.1007/s11051-007-9352-1
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/6/10.1063/1.4880975
Loading
/content/aip/journal/aplmater/2/6/10.1063/1.4880975
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/6/10.1063/1.4880975
2014-06-09
2014-07-24

Abstract

We quantify the effect of clustering on the thermal conductivity of colloidal dispersions using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/6/1.4880975.html;jsessionid=q9oggn98837k.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/6/10.1063/1.4880975&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The thermal conductivity of clustered nanocolloids
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/6/10.1063/1.4880975
10.1063/1.4880975
SEARCH_EXPAND_ITEM