Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London) 453, 80 (2008).
2. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotech. 3, 429 (2008).
3. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, Nature Mater. 10, 625 (2011).
4. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
5. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981).
6. D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009).
7. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and R. Waser, Adv. Funct. Mater. 21, 4487 (2011).
8. J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 22, 3573 (2010).
9. F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).
10. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
11. D.-J. Seong, M. Jo, D. Lee, and H. Hwang, Electrochem. Solid-State Lett. 10, H168 (2007).
12. T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Phys. Rev. B 75, 165101 (2007).
13. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Adv. Mater. 22, 4819 (2010).
14. F. Miao, J. J. Yang, J. Borghetti, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 254007 (2011).
15. J. S. Lee, S. B. Lee, T. W. Noh, and B. Kahng, Appl. Phys. Lett. 102, 253503 (2013).
16. D. Briggs and M. P. Seah, Auger and X-ray Photoelectron Spectroscopy (John Wiley and Sons, New York, 1995).
17. N. Ohashi, H. Yoshikawa, Y. Yamashita, S. Ueda, J. Li, H. Okushi, K. Kobayashi, and H. Haneda, Appl. Phys. Lett. 101, 251911 (2012).
18.See supplementary material at for sample fabrication, measurement details, calculation for the hopping probabilities and electrical current, calculation method for the Joule heating, dependence of maximum value of oxygen vacancy concentration. [Supplementary Material]
19. M. Noman, W. Jiang, P. A. Salvador, M. Skowronski, and J. A. Bain, Appl. Phys. A 102, 877 (2011).
20. T. Baiatu, R. Waser, and K. H. Hardtl, J. Am. Ceram. Soc. 73, 1663 (1990).

Data & Media loading...


Article metrics loading...



In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS) phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies ( ) and the electronic resistance. We find that the density can change at a depth of ∼10 nm below the Pt electrodes in Pt/Nb:SrTiO cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile [J. S. Lee , Appl. Phys. Lett. , 253503 (2013)] near the Schottky barrier interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd