Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/6/10.1063/1.4884215
1.
1. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London) 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
2.
2. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotech. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
3.
3. M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, Nature Mater. 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
4.
4. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
5.
5. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981).
6.
6. D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009).
http://dx.doi.org/10.1007/s00339-008-4975-3
7.
7. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and R. Waser, Adv. Funct. Mater. 21, 4487 (2011).
http://dx.doi.org/10.1002/adfm.201101117
8.
8. J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 22, 3573 (2010).
http://dx.doi.org/10.1002/adma.201000186
9.
9. F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).
http://dx.doi.org/10.1002/adma.201103379
10.
10. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
http://dx.doi.org/10.1038/nature02756
11.
11. D.-J. Seong, M. Jo, D. Lee, and H. Hwang, Electrochem. Solid-State Lett. 10, H168 (2007).
http://dx.doi.org/10.1149/1.2718396
12.
12. T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Phys. Rev. B 75, 165101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.165101
13.
13. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Adv. Mater. 22, 4819 (2010).
http://dx.doi.org/10.1002/adma.201001872
14.
14. F. Miao, J. J. Yang, J. Borghetti, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 254007 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254007
15.
15. J. S. Lee, S. B. Lee, T. W. Noh, and B. Kahng, Appl. Phys. Lett. 102, 253503 (2013).
http://dx.doi.org/10.1063/1.4811556
16.
16. D. Briggs and M. P. Seah, Auger and X-ray Photoelectron Spectroscopy (John Wiley and Sons, New York, 1995).
17.
17. N. Ohashi, H. Yoshikawa, Y. Yamashita, S. Ueda, J. Li, H. Okushi, K. Kobayashi, and H. Haneda, Appl. Phys. Lett. 101, 251911 (2012).
http://dx.doi.org/10.1063/1.4772628
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4884215 for sample fabrication, measurement details, calculation for the hopping probabilities and electrical current, calculation method for the Joule heating, dependence of maximum value of oxygen vacancy concentration. [Supplementary Material]
19.
19. M. Noman, W. Jiang, P. A. Salvador, M. Skowronski, and J. A. Bain, Appl. Phys. A 102, 877 (2011).
http://dx.doi.org/10.1007/s00339-011-6270-y
20.
20. T. Baiatu, R. Waser, and K. H. Hardtl, J. Am. Ceram. Soc. 73, 1663 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb09811.x
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/6/10.1063/1.4884215
Loading
/content/aip/journal/aplmater/2/6/10.1063/1.4884215
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/6/10.1063/1.4884215
2014-06-19
2016-12-07

Abstract

In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS) phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies ( ) and the electronic resistance. We find that the density can change at a depth of ∼10 nm below the Pt electrodes in Pt/Nb:SrTiO cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile [J. S. Lee , Appl. Phys. Lett. , 253503 (2013)] near the Schottky barrier interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/6/1.4884215.html;jsessionid=pRPe4hnp3WZ4zehcwhz8gt5N.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/6/10.1063/1.4884215&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/6/10.1063/1.4884215&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/6/10.1063/1.4884215'
Top,Right1,Right2,Right3,