Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/7/10.1063/1.4886218
1.
1.For a review see, e.g., J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.725
2.
2. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Science 306, 2057 (2004).
http://dx.doi.org/10.1126/science.1100731
3.
3. G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science 279, 353 (1998).
http://dx.doi.org/10.1126/science.279.5349.353
4.
4. F. Montalenti, P. Raiteri, D. B. Migas, H. von Känel, A. Rastelli, C. Manzano, G. Constantini, U. Denker, O. G. Schmidt, K. Kern, and L. Miglio, Phys. Rev. Lett. 93, 216102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.216102
5.
5. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205321
6.
6. Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 4779 (2003).
http://dx.doi.org/10.1063/1.1581986
7.
7. T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, Nanotechnology 18, 455307 (2007).
http://dx.doi.org/10.1088/0957-4484/18/45/455307
8.
8. M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, Nanotechnology 24, 105601 (2013).
http://dx.doi.org/10.1088/0957-4484/24/10/105601
9.
9. J. S. Xia, Y. Ikegami, and Y. Shiraki, Appl. Phys. Lett. 89, 201102 (2006).
http://dx.doi.org/10.1063/1.2386915
10.
10. X. Xu, T. Chiba, T. Nakama, T. Maruizumi, and Y. Shiraki, Appl. Phys. Exp. 5, 102101 (2012).
http://dx.doi.org/10.1143/APEX.5.102101
11.
11. F. Hackl, M. Gyrdlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, Nanotechnology 22, 165302 (2011).
http://dx.doi.org/10.1088/0957-4484/22/16/165302
12.
12.Review in L. Tsybeskov and D. Lockwood, Proc. IEEE 97, 1284 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2020711
13.
13. V. Jovanovic, C. Biasotto, L. K. Nanver, J. Moers, D. Grützmacher, J. Gerharz, G. Mussler, J. van der Cingel, J. J. Zhang, G. Bauer, O. G. Schmidt, and L. Miglio, IEEE Electr. Dev. Lett. 31, 1083 (2010).
http://dx.doi.org/10.1109/LED.2010.2058995
14.
14. G. Katsaros, V. N. Golovach, P. Spathis, N. Ares, M. Stoffel, F. Fournel, O. G. Schmidt, L. I. Glazman, and S. De Franceschi, Phys. Rev. Lett. 107, 246601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.246601
15.
15. G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli, O. G. Schmidt, and S. De Franceschi, Nature Nanotech. 5, 458 (2010).
http://dx.doi.org/10.1038/nnano.2010.84
16.
16. N. Ares, V. N. Golovach, G. Katsaros, M. Stoffel, F. Fournel, L. I. Glazman, O. G. Schmidt, and S. De Franceschi, Phys. Rev. Lett. 110, 046602 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.046602
17.
17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
18.
18.For catalyst-based in-plane wires see, e.g., I. C. Marcus, I. Berbezier, A. Ronda, M. I. Alonso, M. Garriga, A. R. Goni, E. Gomes, L. Favre, A. Delobbe, and P. Sudraud, Crys. Growth Des. 11, 3190 (2011).
http://dx.doi.org/10.1021/cg200433r
19.
19. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
20.
20. W. Lu, J. Xiang, B. P. Timko, Y. Wu, and C. M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 102, 10046 (2005).
http://dx.doi.org/10.1073/pnas.0504581102
21.
21.For a recent review see, e.g., R. G. Hobbs, N. Petkov, and J. D. Holmes, Chem. Mater. 24, 1975 (2012).
http://dx.doi.org/10.1021/cm300570n
22.
22. G. Chen, G. Springholz, W. Jantsch, and F. Schäffler, Appl. Phys. Lett. 99, 043103 (2011).
http://dx.doi.org/10.1063/1.3608149
23.
23. J. J. Zhang, A. Rastelli, O. G. Schmidt, D. Scopece, L. Miglio, and F. Montalenti, Appl. Phys. Lett. 103, 083109 (2013).
http://dx.doi.org/10.1063/1.4818717
24.
24. J. J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R. E. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 085502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.085502
25.
25. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1020
26.
26. M. Kästner and B. Voigtländer, Phys. Rev. Lett. 82, 2745 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2745
27.
27. M. R. McKay, J. A. Venables, and J. Ducker, Phys. Rev. Lett. 101, 216104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.216104
28.
28. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
29.
29. D. B. Migdas, S. Cereda, F. Montalenti, and L. Miglio, Surf. Sci. 556, 121 (2004).
http://dx.doi.org/10.1016/j.susc.2004.03.023
30.
30. G.-H. Lu and F. Liu, Phys. Rev. Lett. 94, 176103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176103
31.
31. L. V. Arapkina and V. A. Yuryev, J. Appl. Phys. 114, 104304 (2013).
http://dx.doi.org/10.1063/1.4819457
32.
32. G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, Phys. Rev. B 74, 035302 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035302
33.
33. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.055503
34.
34. F. Montalenti, D. Scopece, and L. Miglio, Comp. Rend. Phys. 14, 542 (2013).
http://dx.doi.org/10.1016/j.crhy.2013.06.003
35.
35. J. Tersoff, Appl. Phys. Lett. 83, 353 (2003).
http://dx.doi.org/10.1063/1.1592304
36.
36.We also studied lower Ge concentrations x, but below x = 0.8 only bundles of QWs were observed, which are not the focus of this contribution.
37.
37. W. Kern, J. Electrochem. Soc. 137, 1887 (1990).
http://dx.doi.org/10.1149/1.2086825
38.
38. K. Fujita, S. Fukatsu, H. Yaguschi, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 59, 2240 (1991).
http://dx.doi.org/10.1063/1.106082
39.
39. D. J. Norris, Y. Qiu, A. Dobbie, M. Myronov, and T. Walther, J. Appl. Phys. 115, 012003 (2014).
http://dx.doi.org/10.1063/1.4837975
40.
40. M. R. Mckay, J. Shumway, and J. Drucker, J. Appl. Phys. 99, 094305 (2006).
http://dx.doi.org/10.1063/1.2191574
41.
41. C. M. Retford, M. Asta, M. J. Miksis, P. W. Voorhees, and E. B. Webb III, Phys. Rev. B 75, 075311 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.075311
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4886218
Loading
/content/aip/journal/aplmater/2/7/10.1063/1.4886218
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/7/10.1063/1.4886218
2014-07-01
2016-09-30

Abstract

Isolated in-plane wires on Si(001) are promising nanostructures for quantum transport applications. They can be fabricated in a catalyst-free process by thermal annealing of self-organized Si Ge hut clusters. Here, we report on the influence of composition and small substrate miscuts on the unilateral wire growth during annealing at 570 °C. The addition of up to 20% of Si mainly affects the growth kinetics in the presence of energetically favorable sinks for diffusing Ge atoms, but does not significantly change the wire base width. For the investigated substrate miscuts of <0.12°, we find geometry-induced wire tapering, but no strong influence on the wire lengths. Miscuts <0.02° lead to almost perfect quantum wires terminated by virtually step-free {105} and {001} facets over lengths of several 100 nm. Generally, the investigated Si Ge wires are metastable: Annealing at ≥600 °C under otherwise identical conditions leads to the well-known coexistence of Si Ge pyramids and domes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/7/1.4886218.html;jsessionid=FLevZU7BFtU6YHLHrYJk5BDY.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/7/10.1063/1.4886218&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/7/10.1063/1.4886218&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/7/10.1063/1.4886218'
Top,Right1,Right2,Right3,