Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.For a review see, e.g., J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).
2. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Science 306, 2057 (2004).
3. G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science 279, 353 (1998).
4. F. Montalenti, P. Raiteri, D. B. Migas, H. von Känel, A. Rastelli, C. Manzano, G. Constantini, U. Denker, O. G. Schmidt, K. Kern, and L. Miglio, Phys. Rev. Lett. 93, 216102 (2004).
5. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
6. Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 4779 (2003).
7. T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, Nanotechnology 18, 455307 (2007).
8. M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, Nanotechnology 24, 105601 (2013).
9. J. S. Xia, Y. Ikegami, and Y. Shiraki, Appl. Phys. Lett. 89, 201102 (2006).
10. X. Xu, T. Chiba, T. Nakama, T. Maruizumi, and Y. Shiraki, Appl. Phys. Exp. 5, 102101 (2012).
11. F. Hackl, M. Gyrdlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, Nanotechnology 22, 165302 (2011).
12.Review in L. Tsybeskov and D. Lockwood, Proc. IEEE 97, 1284 (2009).
13. V. Jovanovic, C. Biasotto, L. K. Nanver, J. Moers, D. Grützmacher, J. Gerharz, G. Mussler, J. van der Cingel, J. J. Zhang, G. Bauer, O. G. Schmidt, and L. Miglio, IEEE Electr. Dev. Lett. 31, 1083 (2010).
14. G. Katsaros, V. N. Golovach, P. Spathis, N. Ares, M. Stoffel, F. Fournel, O. G. Schmidt, L. I. Glazman, and S. De Franceschi, Phys. Rev. Lett. 107, 246601 (2011).
15. G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli, O. G. Schmidt, and S. De Franceschi, Nature Nanotech. 5, 458 (2010).
16. N. Ares, V. N. Golovach, G. Katsaros, M. Stoffel, F. Fournel, L. I. Glazman, O. G. Schmidt, and S. De Franceschi, Phys. Rev. Lett. 110, 046602 (2013).
17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
18.For catalyst-based in-plane wires see, e.g., I. C. Marcus, I. Berbezier, A. Ronda, M. I. Alonso, M. Garriga, A. R. Goni, E. Gomes, L. Favre, A. Delobbe, and P. Sudraud, Crys. Growth Des. 11, 3190 (2011).
19. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
20. W. Lu, J. Xiang, B. P. Timko, Y. Wu, and C. M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 102, 10046 (2005).
21.For a recent review see, e.g., R. G. Hobbs, N. Petkov, and J. D. Holmes, Chem. Mater. 24, 1975 (2012).
22. G. Chen, G. Springholz, W. Jantsch, and F. Schäffler, Appl. Phys. Lett. 99, 043103 (2011).
23. J. J. Zhang, A. Rastelli, O. G. Schmidt, D. Scopece, L. Miglio, and F. Montalenti, Appl. Phys. Lett. 103, 083109 (2013).
24. J. J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R. E. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 085502 (2012).
25. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).
26. M. Kästner and B. Voigtländer, Phys. Rev. Lett. 82, 2745 (1999).
27. M. R. McKay, J. A. Venables, and J. Ducker, Phys. Rev. Lett. 101, 216104 (2008).
28. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
29. D. B. Migdas, S. Cereda, F. Montalenti, and L. Miglio, Surf. Sci. 556, 121 (2004).
30. G.-H. Lu and F. Liu, Phys. Rev. Lett. 94, 176103 (2005).
31. L. V. Arapkina and V. A. Yuryev, J. Appl. Phys. 114, 104304 (2013).
32. G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, Phys. Rev. B 74, 035302 (2006).
33. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
34. F. Montalenti, D. Scopece, and L. Miglio, Comp. Rend. Phys. 14, 542 (2013).
35. J. Tersoff, Appl. Phys. Lett. 83, 353 (2003).
36.We also studied lower Ge concentrations x, but below x = 0.8 only bundles of QWs were observed, which are not the focus of this contribution.
37. W. Kern, J. Electrochem. Soc. 137, 1887 (1990).
38. K. Fujita, S. Fukatsu, H. Yaguschi, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 59, 2240 (1991).
39. D. J. Norris, Y. Qiu, A. Dobbie, M. Myronov, and T. Walther, J. Appl. Phys. 115, 012003 (2014).
40. M. R. Mckay, J. Shumway, and J. Drucker, J. Appl. Phys. 99, 094305 (2006).
41. C. M. Retford, M. Asta, M. J. Miksis, P. W. Voorhees, and E. B. Webb III, Phys. Rev. B 75, 075311 (2007).

Data & Media loading...


Article metrics loading...



Isolated in-plane wires on Si(001) are promising nanostructures for quantum transport applications. They can be fabricated in a catalyst-free process by thermal annealing of self-organized Si Ge hut clusters. Here, we report on the influence of composition and small substrate miscuts on the unilateral wire growth during annealing at 570 °C. The addition of up to 20% of Si mainly affects the growth kinetics in the presence of energetically favorable sinks for diffusing Ge atoms, but does not significantly change the wire base width. For the investigated substrate miscuts of <0.12°, we find geometry-induced wire tapering, but no strong influence on the wire lengths. Miscuts <0.02° lead to almost perfect quantum wires terminated by virtually step-free {105} and {001} facets over lengths of several 100 nm. Generally, the investigated Si Ge wires are metastable: Annealing at ≥600 °C under otherwise identical conditions leads to the well-known coexistence of Si Ge pyramids and domes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd