Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, J. Am. Chem. Soc. 133, 9960 (2011).
2. J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, and J. Shin, Chem. Mater. 22, 233 (2010).
3. T. Shiono, H. Yamamoto, and S. Nishino, Jpn. J. Appl. Phys. 43, 4941 (2004).
4. N. Venkatram, R. Sathyavathi, and D. N. Rao, Opt. Express 15, 12258 (2007).
5. M. Nyk, D. Wawrzynczyk, J. Szeremeta, and M. Samoc, Appl. Phys. Lett. 100, 041102 (2012).
6. I. L. Bolotin, D. J. Asunskis, A. M. Jawaid, Y. Liu, P. T. Snee, and L. Hanley, J. Phys. Chem. C 114, 16257 (2010).
7. A. D. Lad, P. Premkiran, G. R. Kumar, and S. Mahamuni, Appl. Phys. Lett. 90, 133113 (2007).
8. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, Nano Lett. 12, 4661 (2012).
9. K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
10. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. N. Xu, ACS Nano 1, 133 (2007).
11. L. Chou, N. Shin, S. V. Sivaram, and M. A. Filler, J. Am. Chem. Soc. 134, 16155 (2012).
12. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).
13. X. Liu, C. Lee, W. Law, D. Zhu, M. Liu, M. Jeon, J. Kim, P. N. Prasad, C. Kim, and M. T. Swihart, Nano Lett. 13, 4333 (2013)
14. C. Ratanatawanate, A. Bui, K. Vu, and K. J. Balkus Jr., J. Phys. Chem. C. 115, 6175 (2011).
15. S. Zhang, H. Zhong, and C. Ding, Anal. Chem. 80, 7206 (2008).
16. Y. Li, W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen, Nanomedicine 5, 1161 (2010).
17. B. Li, Y. Xie, and Y. Xue, J. Phys. Chem. C 111, 12181 (2007).
18. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Nat. Mater. 10, 361 (2011).
19. A. A. Patel, F. Wu, J. Z. Zhang, C. L. Torres-Martinez, R. K. Mehra, Y. Yang, and S. H. Risbud, J. Phys. Chem. B 104, 11598 (2000).
20. A. Silambarasan, H. P. Kavitha, S. Ponnusamy, M. Navaneethan, and Y. Hayakawa, Mater. Lett. 81, 209 (2012).
21. A. Dutta and S. K. Dolui, Mater. Chem. Phys. 112, 448 (2008).
22. M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990).
23.See supplementary material at for transmission electron micrograph (TEM) images (Figure s1) and detailed explanation of XRD analysis (Figure s2). [Supplementary Material]
24. J. S. Cruz, S. A. M. Hernández, F. P. Delgado, O. Z. Angel, R. C. Pérez, and G. T. Delgado, Int. J. Photoenergy 2013, 178017 (2013).
25. J. H. Warner, M. H. Rümmeli, T. Gemming, B. Büchner, and A. D. Briggs, Nano Lett. 9, 102 (2009).
26. F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, Nano Lett. 9, 2774 (2009).
27. F. Huang, H. Zhang, and J. F. Banfield, J. Phys. Chem. B 107, 10470 (2003).
28. F. Huang and J. F. Banfield, J. Am. Chem. Soc. 127, 4523 (2005).
29. X. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, V. Sukhovatkin, E. H. Sargent, and E. Kumacheva, Langmuir 21, 1086 (2005).
30. G. Hodes, Chemical Solution Deposition of Semiconductor Films (CRC Press, 2002).
31. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, J. Am. Chem. Soc. 131, 4253 (2009).
32. Y. Zhao and C. Burda, Energy Environ. Sci. 5, 5564 (2012).
33. I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, J. Am. Chem. Soc. 134, 1583 (2012).
34. S. Hsu, W. Bryks, and A. R. Tao, Chem. Mater. 24, 3765 (2012).
35. M. V. Artemyev, V. S. Gurin, K. V. Yumashev, P. V. Prokoshin, and A. M. Maljarevich, J. Appl. Phys. 80, 7028 (1996).
36. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).
37. B. Anand, S. R. Krishnan, R. Podila, S. S. Sankara Sai, A. M. Rao, and R. Philip, Phys. Chem. Chem. Phys. 16, 8168 (2014).
38. R. Philip, G. Ravindra Kumar, N. Sandhyarani, and T. Pradeep, Phys. Rev. B. 62, 13160 (2000).
39. B. Cichy, D. Wawrzynczyk, A. Bednarkiewicz, M. Samoc, and W. Strek, Appl. Phys. Lett. 102, 243702 (2013).
40. J. Szeremeta, M. Nyk, D. Wawrzynczyk, and M. Samoc, Nanoscale 5, 2388 (2013).

Data & Media loading...


Article metrics loading...



We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd