Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/7/10.1063/1.4886276
1.
1. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, J. Am. Chem. Soc. 133, 9960 (2011).
http://dx.doi.org/10.1021/ja2036749
2.
2. J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, and J. Shin, Chem. Mater. 22, 233 (2010).
http://dx.doi.org/10.1021/cm9027995
3.
3. T. Shiono, H. Yamamoto, and S. Nishino, Jpn. J. Appl. Phys. 43, 4941 (2004).
http://dx.doi.org/10.1143/JJAP.43.4941
4.
4. N. Venkatram, R. Sathyavathi, and D. N. Rao, Opt. Express 15, 12258 (2007).
http://dx.doi.org/10.1364/OE.15.012258
5.
5. M. Nyk, D. Wawrzynczyk, J. Szeremeta, and M. Samoc, Appl. Phys. Lett. 100, 041102 (2012).
http://dx.doi.org/10.1063/1.3679381
6.
6. I. L. Bolotin, D. J. Asunskis, A. M. Jawaid, Y. Liu, P. T. Snee, and L. Hanley, J. Phys. Chem. C 114, 16257 (2010).
http://dx.doi.org/10.1021/jp105069k
7.
7. A. D. Lad, P. Premkiran, G. R. Kumar, and S. Mahamuni, Appl. Phys. Lett. 90, 133113 (2007).
http://dx.doi.org/10.1063/1.2714994
8.
8. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, Nano Lett. 12, 4661 (2012).
http://dx.doi.org/10.1021/nl301988v
9.
9. K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
http://dx.doi.org/10.1021/jp062536y
10.
10. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. N. Xu, ACS Nano 1, 133 (2007).
http://dx.doi.org/10.1021/nn700048y
11.
11. L. Chou, N. Shin, S. V. Sivaram, and M. A. Filler, J. Am. Chem. Soc. 134, 16155 (2012).
http://dx.doi.org/10.1021/ja3075902
12.
12. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).
http://dx.doi.org/10.1063/1.121584
13.
13. X. Liu, C. Lee, W. Law, D. Zhu, M. Liu, M. Jeon, J. Kim, P. N. Prasad, C. Kim, and M. T. Swihart, Nano Lett. 13, 4333 (2013)
http://dx.doi.org/10.1021/nl402124h
14.
14. C. Ratanatawanate, A. Bui, K. Vu, and K. J. Balkus Jr., J. Phys. Chem. C. 115, 6175 (2011).
http://dx.doi.org/10.1021/jp109716q
15.
15. S. Zhang, H. Zhong, and C. Ding, Anal. Chem. 80, 7206 (2008).
http://dx.doi.org/10.1021/ac800847r
16.
16. Y. Li, W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen, Nanomedicine 5, 1161 (2010).
http://dx.doi.org/10.2217/nnm.10.85
17.
17. B. Li, Y. Xie, and Y. Xue, J. Phys. Chem. C 111, 12181 (2007).
http://dx.doi.org/10.1021/jp070861v
18.
18. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Nat. Mater. 10, 361 (2011).
http://dx.doi.org/10.1038/nmat3004
19.
19. A. A. Patel, F. Wu, J. Z. Zhang, C. L. Torres-Martinez, R. K. Mehra, Y. Yang, and S. H. Risbud, J. Phys. Chem. B 104, 11598 (2000).
http://dx.doi.org/10.1021/jp000639p
20.
20. A. Silambarasan, H. P. Kavitha, S. Ponnusamy, M. Navaneethan, and Y. Hayakawa, Mater. Lett. 81, 209 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.05.005
21.
21. A. Dutta and S. K. Dolui, Mater. Chem. Phys. 112, 448 (2008).
http://dx.doi.org/10.1016/j.matchemphys.2008.05.072
22.
22. M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4886276 for transmission electron micrograph (TEM) images (Figure s1) and detailed explanation of XRD analysis (Figure s2). [Supplementary Material]
24.
24. J. S. Cruz, S. A. M. Hernández, F. P. Delgado, O. Z. Angel, R. C. Pérez, and G. T. Delgado, Int. J. Photoenergy 2013, 178017 (2013).
http://dx.doi.org/10.1155/2013/178017
25.
25. J. H. Warner, M. H. Rümmeli, T. Gemming, B. Büchner, and A. D. Briggs, Nano Lett. 9, 102 (2009).
http://dx.doi.org/10.1021/nl8025949
26.
26. F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, Nano Lett. 9, 2774 (2009).
http://dx.doi.org/10.1021/nl901315s
27.
27. F. Huang, H. Zhang, and J. F. Banfield, J. Phys. Chem. B 107, 10470 (2003).
http://dx.doi.org/10.1021/jp035518e
28.
28. F. Huang and J. F. Banfield, J. Am. Chem. Soc. 127, 4523 (2005).
http://dx.doi.org/10.1021/ja048121c
29.
29. X. Zhao, I. Gorelikov, S. Musikhin, S. Cauchi, V. Sukhovatkin, E. H. Sargent, and E. Kumacheva, Langmuir 21, 1086 (2005).
http://dx.doi.org/10.1021/la048730y
30.
30. G. Hodes, Chemical Solution Deposition of Semiconductor Films (CRC Press, 2002).
31.
31. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, J. Am. Chem. Soc. 131, 4253 (2009).
http://dx.doi.org/10.1021/ja805655b
32.
32. Y. Zhao and C. Burda, Energy Environ. Sci. 5, 5564 (2012).
http://dx.doi.org/10.1039/c1ee02734d
33.
33. I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, J. Am. Chem. Soc. 134, 1583 (2012).
http://dx.doi.org/10.1021/ja207798q
34.
34. S. Hsu, W. Bryks, and A. R. Tao, Chem. Mater. 24, 3765 (2012).
http://dx.doi.org/10.1021/cm302363x
35.
35. M. V. Artemyev, V. S. Gurin, K. V. Yumashev, P. V. Prokoshin, and A. M. Maljarevich, J. Appl. Phys. 80, 7028 (1996).
http://dx.doi.org/10.1063/1.363814
36.
36. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).
http://dx.doi.org/10.1021/j100155a009
37.
37. B. Anand, S. R. Krishnan, R. Podila, S. S. Sankara Sai, A. M. Rao, and R. Philip, Phys. Chem. Chem. Phys. 16, 8168 (2014).
http://dx.doi.org/10.1039/c3cp55334e
38.
38. R. Philip, G. Ravindra Kumar, N. Sandhyarani, and T. Pradeep, Phys. Rev. B. 62, 13160 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13160
39.
39. B. Cichy, D. Wawrzynczyk, A. Bednarkiewicz, M. Samoc, and W. Strek, Appl. Phys. Lett. 102, 243702 (2013).
http://dx.doi.org/10.1063/1.4811786
40.
40. J. Szeremeta, M. Nyk, D. Wawrzynczyk, and M. Samoc, Nanoscale 5, 2388 (2013).
http://dx.doi.org/10.1039/c3nr33860f
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4886276
Loading
/content/aip/journal/aplmater/2/7/10.1063/1.4886276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/7/10.1063/1.4886276
2014-07-01
2016-12-03

Abstract

We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/7/1.4886276.html;jsessionid=z_jIN2jLFE-XgTNB2a0eDL1P.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/7/10.1063/1.4886276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/7/10.1063/1.4886276&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/7/10.1063/1.4886276'
Top,Right1,Right2,Right3,