1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Research Update: Retardation and acceleration of phase separation evaluated from observation of imbalance between structure and valence in LiFePO4/FePO4 electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/7/10.1063/1.4886555
1.
1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).
http://dx.doi.org/10.1149/1.1837571
2.
2. A. Yamada, S. C. Chung, and K. Hinokuma, J. Electrochem. Soc. 148, A224 (2001).
http://dx.doi.org/10.1149/1.1348257
3.
3. G. Rousse, J. Rodriguez-Carvajal, S. Patoux, and C. Masquelier, Chem. Mater. 15, 4082 (2003).
http://dx.doi.org/10.1021/cm0300462
4.
4. T. Maxisch and G. Ceder, Phys. Rev. B 73, 174112 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.174112
5.
5. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Nat. Mater. 7, 665 (2008).
http://dx.doi.org/10.1038/nmat2230
6.
6. K. Hirai et al., Acta Mater. 56, 1539 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.12.002
7.
7. T. Ichitsubo et al., J. Mater. Chem. 21, 2701 (2011).
http://dx.doi.org/10.1039/c0jm02893b
8.
8. T. Ichitsubo et al., J. Electrochem. Soc. 159, A14 (2012).
http://dx.doi.org/10.1149/2.038201jes
9.
9. N. Meethong, H.-Y. S. Huang, S. A. Speakman, W. C. Carter, and Y.-M. Chiang, Adv. Funct. Mater. 17, 1115 (2007).
http://dx.doi.org/10.1002/adfm.200600938
10.
10. M. Tang et al., Chem. Mater. 21, 1557 (2009).
http://dx.doi.org/10.1021/cm803172s
11.
11. A. Van der Ven, K. Garikipati, S. Kim, and M. Wagemaker, J. Electrochem. Soc. 156, A949 (2009).
http://dx.doi.org/10.1149/1.3222746
12.
12. D. A. Cogswell and M. Z. Bazant, ACS Nano 6, 2215 (2012).
http://dx.doi.org/10.1021/nn204177u
13.
13. T. Ichitsubo et al., J. Mater. Chem. A 1, 2567 (2013).
http://dx.doi.org/10.1039/c2ta01102f
14.
14. T. Ichitsubo et al., J. Mater. Chem. A 1, 14532 (2013).
http://dx.doi.org/10.1039/c3ta13122j
15.
15. J. R. Dahn, M. A. Py, and R. R. Haering, Can. J. Phys. 60, 307 (1982).
http://dx.doi.org/10.1139/p82-040
16.
16. H. Chang et al., Electrochem. Commun. 10, 335 (2008).
http://dx.doi.org/10.1016/j.elecom.2007.12.024
17.
17. H. C. Shin et al., Electrochem. Commun. 10, 536 (2008).
http://dx.doi.org/10.1016/j.elecom.2008.02.002
18.
18. Y.-H. Kao et al., Chem. Mater. 22, 5845 (2010).
http://dx.doi.org/10.1021/cm101698b
19.
19. I. Nakai, Electrochem. Solid-State Lett. 1, 259 (1999).
http://dx.doi.org/10.1149/1.1390705
20.
20. A. Deb, U. Bergmann, S. P. Cramer, and E. J. Cairns, Electrochim. Acta 50, 5200 (2005).
http://dx.doi.org/10.1016/j.electacta.2005.02.086
21.
21. X. Yu et al., Chem. Commun. 48, 11537 (2012).
http://dx.doi.org/10.1039/c2cc36382h
22.
22. J. B. Leriche et al., J. Electrochem. Soc. 157, A606 (2010).
http://dx.doi.org/10.1149/1.3355977
23.
23. X.-J. Wang et al., J. Mater. Chem. 21, 11406 (2011).
http://dx.doi.org/10.1039/c1jm11036e
24.
24. L. Alexander and H. P. Klug, Anal. Chem. 20, 886 (1948).
http://dx.doi.org/10.1021/ac60022a002
25.
25. S. Sasaki, KEK Rep. 90–16, 1 (1990); http://lipro.msl.titech.ac.jp/scatfac/scatfac.html.
26.
26. A. Yamada et al., Nat. Mater. 5, 357 (2006).
http://dx.doi.org/10.1038/nmat1634
27.
27. J. W. Cahn, Acta Metall. 9, 795 (1961).
http://dx.doi.org/10.1016/0001-6160(61)90182-1
28.
28. J. W. Cahn, Acta Metall. 10, 179 (1962).
http://dx.doi.org/10.1016/0001-6160(62)90114-1
29.
29. T. Ichitsubo, K. Tanaka, M. Koiwa, and Y. Yamazaki, Phys. Rev. B 62, 5435 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5435
30.
30. L. Laffont et al., Chem. Mater. 18, 5520 (2006).
http://dx.doi.org/10.1021/cm0617182
31.
31. G. Chen, X. Song, and T. J. Richardson, Electrochem. Solid-State Lett. 9, A295 (2006).
http://dx.doi.org/10.1149/1.2192695
32.
32. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
http://dx.doi.org/10.1063/1.1744102
33.
33. Y. Orikasa et al., J. Am. Chem. Soc. 135, 5497 (2013).
http://dx.doi.org/10.1021/ja312527x
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4886555
Loading
/content/aip/journal/aplmater/2/7/10.1063/1.4886555
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/7/10.1063/1.4886555
2014-07-03
2014-09-22

Abstract

LiFePO is a potential positive electrode material for lithium ion batteries. We have experimentally observed an imbalance between the valence change of Fe ions and the structure change from the LiFePO phase to the FePO phase during delithiation by simultaneous XRD and XANES measurements in an LiFePO/FePO electrode. The ratio of structure change to valence change clearly indicates that the phase separation from LiFePO to FePO is suppressed at the beginning of delithiation, while it is accelerated at the latter stage, which is due to the coherent strain caused by the lattice misfit between the two phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/7/1.4886555.html;jsessionid=3chjm4thcv18x.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/7/10.1063/1.4886555&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Retardation and acceleration of phase separation evaluated from observation of imbalance between structure and valence in LiFePO4/FePO4 electrode
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4886555
10.1063/1.4886555
SEARCH_EXPAND_ITEM