Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and A. Nitayama, in Digest of Technical Papers Symposium on VLSI Technology (IEEE, 2007), pp. 1415.
2. J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J.-H. Jeong, B.-K. Son, D. W. Kim, J.-J. Shim, J. S. Lim, K.-H. Kim, S. Y. Yi, J.-Y. Lim, D. Chung, H.-C. Moon, S. Hwang, J.-W. Lee, Y.-H. Son, U.-I. Chung, and W.-S. Lee, in Digest of Technical Papers Symposium on VLSI Technology (IEEE, 2009), pp. 192193.
3. Y. Fukuzumi, R. Katsumura, M. Kito, M. Kido, M. Sato, H. Tanaka, Y. Nagata, Y. Iwata, H. Aochi, and A. Nitayama, in Technical Digest - International Electron Devices Meeting (IEEE, 2007), pp. 449452.
4. B. Kim, S.-H. Lim, D. W. Kim, T. Nakanishi, S. Yang, J.-Y. Ahn, H. Choi, K. Hwang, Y. Ko, and C.-J. Kang, in Proceedings of the IEEE International Reliability Physics Symposium (IEEE, 2011), pp. 2E412E44.
5. A. J. Walker, IEEE Trans. Electron Devices 56, 2703 (2009).
6. T. Matsuyama, T. Baba, M. Tanaka, S. Tsuda, H. Nishiwaki, S. Nakano, H. Hanafusa, and Y. Kuwano, Mater. Res. Soc. Symp. Proc. 283, 727 (1992).
7. N. Yamauchi and R. Reif, J. Appl. Phys. 75, 3235 (1994).
8. C. M. Yang and H. A. Atwater, Appl. Phys. Lett. 68, 3392 (1996).
9. M. K. Ryu, S. M. Hwang, T. H. Kim, K. B. Kim, and S. H. Min, Appl. Phys. Lett. 71, 3063 (1997).
10. X. Z. Bo, N. Yao, S. R. Shieh, T. S. Duffy, and J. C. Sturm, J. Appl. Phys. 91, 2910 (2002).
11. T. H. Kim, M. K. Ryu, and K. B. Kim, Jpn. J. Appl. Phys. 37, L108 (1998).
12. F. S. Johnson, D. S. Miles, D. T. Grider, and J. J. Wortman, J. Electron. Mater. 21, 805 (1992).
13. C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys. 84, 5383 (1998).
14. P. Temple-Boyer, B. Rousset, and E. Scheid, Thin Solid Films 518, 6897 (2010).
15. R. B. Iverson and R. Reif, J. Appl. Phys. 62, 1675 (1987).
16. C.-W. Hwang, M.-K. Ryu, K.-B. Kim, S.-C. Lee, and C.-S. Kim, J. Appl. Phys. 77, 3042 (1995).
17. L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, J. Appl. Phys. 75, 3944 (1994).
18. P. B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998).
19. R. Sinclair, J. Morgiel, A. S. Kirtikar, I. W. Wu, and A. Chiang, Ultramicroscopy 51, 41 (1993).
20. H. S. Kim and J. Y. Lee, Appl. Phys. Lett. 73, 2739 (1998).

Data & Media loading...


Article metrics loading...



The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd