Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/7/10.1063/1.4891276
1.
1. J. Escrig, P. Landeros, D. Altbir, E. Vogel, and P. Vargas, J. Magn. Magn. Mater. 308, 233 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.05.019
2.
2. P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, and E. E. Vogel, Appl. Phys. Lett. 90, 102501 (2007).
http://dx.doi.org/10.1063/1.2437655
3.
3. P. Landeros, O. J. Suarez, A. Cuchillo, and P. Vargas, Phys. Rev. B 79, 024404 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.024404
4.
4. P. Landeros and A. S. Núñez, J. Appl. Phys. 108, 033917 (2010).
http://dx.doi.org/10.1063/1.3466747
5.
5. M. Yan, C. Andreas, A. Kákay, F. García-Sánchez, and R. Hertel, Appl. Phys. Lett. 99, 122505 (2011).
http://dx.doi.org/10.1063/1.3643037
6.
6. M. Yan, A. Kákay, C. Andreas, and R. Hertel, Phys. Rev. B 88, 220412 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.220412
7.
7. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
8.
8. N. S. Dellas, J. Liang, B. J. Cooley, N. Samarth, and S. E. Mohney, Appl. Phys. Lett. 97, 072505 (2010).
http://dx.doi.org/10.1063/1.3481066
9.
9. J. Liang, J. Wang, A. Paul, B. J. Cooley, D. W. Rench, N. S. Dellas, S. E. Mohney, R. Engel-Herbert, and N. Samarth, Appl. Phys. Lett. 100, 182402 (2012).
http://dx.doi.org/10.1063/1.4710524
10.
10. M. Hilse, Y. Takagaki, J. Herfort, M. Ramsteiner, C. Herrmann, S. Breuer, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 95, 133126 (2009).
http://dx.doi.org/10.1063/1.3240405
11.
11. A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck, C. Back, and E. Reiger, Nano Lett. 9, 3860 (2009), see http://pubs.acs.org/doi/pdf/10.1021/nl9020717.
http://dx.doi.org/10.1021/nl9020717
12.
12. X. Yu, H. Wang, D. Pan, J. Zhao, J. Misuraca, S. von Molnár, and P. Xiong, Nano Lett. 13, 1572 (2013), see http://pubs.acs.org/doi/pdf/10.1021/nl304740k.
http://dx.doi.org/10.1021/nl304740k
13.
13. G. Tourillon, L. Pontonnier, J. P. Levy, and V. Langlais, Electrochem. Solid-State Lett. 3, 20 (2000).
http://dx.doi.org/10.1149/1.1390946
14.
14. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001).
http://dx.doi.org/10.1002/1521-4095(200111)13:21<1631::AID-ADMA1631>3.0.CO;2-R
15.
15. Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004).
http://dx.doi.org/10.1063/1.1655692
16.
16. K. Nielsch, F. J. Castaño, C. A. Ross, and R. Krishnan, J. Appl. Phys. 98, 034318 (2005).
http://dx.doi.org/10.1063/1.2005384
17.
17. M. Daub, M. Knez, U. Goesele, and K. Nielsch, J. Appl. Phys. 101, 09J111 (2007).
http://dx.doi.org/10.1063/1.2712057
18.
18. J. Bachmann, Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gösele, and K. Nielsch, J. Am. Chem. Soc. 129, 9554 (2007).
http://dx.doi.org/10.1021/ja072465w
19.
19. M. Hilse, J. Herfort, B. Jenichen, A. Trampert, M. Hanke, P. Schaaf, L. Geelhaar, and H. Riechert, Nano Lett. 13, 6203 (2013).
http://dx.doi.org/10.1021/nl4035994
20.
20. D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou, Nano Lett. 4, 2151 (2004).
http://dx.doi.org/10.1021/nl048758u
21.
21. D. Rüffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler, Nanoscale 4, 4989 (2012).
http://dx.doi.org/10.1039/c2nr31086d
22.
22. D. P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, J. Arbiol, A. Fontcuberta i Morral, D. Grundler, and M. Poggio, Nano Lett. 12, 6139 (2012), see http://pubs.acs.org/doi/pdf/10.1021/nl302950u.
http://dx.doi.org/10.1021/nl302950u
23.
23. A. Buchter, J. Nagel, D. Rüffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio, Phys. Rev. Lett. 111, 067202 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.067202
24.
24. C. Butschkow, E. Reiger, A. Rudolph, S. Geißler, D. Neumaier, M. Soda, D. Schuh, G. Woltersdorf, W. Wegscheider, and D. Weiss, Phys. Rev. B 87, 245303 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245303
25.
25. H. Yu, R. Huber, T. Schwarze, F. Brandl, T. Rapp, P. Berberich, G. Duerr, and D. Grundler, Appl. Phys. Lett. 100, 262412 (2012).
http://dx.doi.org/10.1063/1.4731273
26.
26. J. Nagel, A. Buchter, F. Xue, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, D. Rüffer, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler, Phys. Rev. B 88, 064425 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.064425
27.
27. E. Uccelli, J. Arbiol, C. Magen, P. Krogstrup, E. Russo-Averchi, M. Heiss, G. Mugny, F. Morier-Genoud, J. Nygard, J. R. Morante, and A. Fontcuberta i Morral, Nano Lett. 11, 3827 (2011).
http://dx.doi.org/10.1021/nl201902w
28.
28. E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, Nanoscale 4, 1486 (2012).
http://dx.doi.org/10.1039/c2nr11799a
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4891276 for an overview of relevant geometrical parameters of investigated nanotubes. [Supplementary Material]
30.
30. M. de la Mata, C. Magen, J. Gazquez, M. I. B. Utama, M. Heiss, S. Lopatin, F. Furtmayr, C. J. Fernández-Rojas, B. Peng, J. R. Morante, R. Rurali, M. Eickhoff, A. Fontcuberta i Morral, Q. Xiong, and J. Arbiol, Nano Lett. 12, 2579 (2012), see http://pubs.acs.org/doi/pdf/10.1021/nl300840q.
http://dx.doi.org/10.1021/nl300840q
31.
31. A. T. Hindmarch, C. J. Kinane, M. MacKenzie, J. N. Chapman, M. Henini, D. Taylor, D. A. Arena, J. Dvorak, B. J. Hickey, and C. H. Marrows, Phys. Rev. Lett. 100, 117201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.117201
32.
32. T. Schwarze and D. Grundler, Appl. Phys. Lett. 102, 222412 (2013).
http://dx.doi.org/10.1063/1.4809757
34.
34. A. Aharoni, L. Pust, and M. Kief, J. Appl. Phys. 87, 6564 (2000).
http://dx.doi.org/10.1063/1.372771
35.
35.Nanotubes are non-ellipsoidal magnetic elements for which an inhomogeneous internal field is expected when H is perpendicular to the long axis. This would make position-dependent demagnetization factors necessary when describing the micromagnetic behavior in detail. This is why we define the so-called magnetometric demagnetization factor.
36.
36. D. Rüffer, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 99, 142112 (2011).
http://dx.doi.org/10.1063/1.3640487
37.
37. Y. Q. Jia, S. Y. Chou, and J.-G. Zhu, J. Appl. Phys. 81, 5461 (1997).
http://dx.doi.org/10.1063/1.364947
38.
38. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.174205
39.
39. T. G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge, Phys. Rev. B 51, 283 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.283
40.
40. S. Tsunashima, M. Jimbo, Y. Imada, and K. Komiyama, J. Magn. Magn. Mater. 165, 111 (1997).
http://dx.doi.org/10.1016/S0304-8853(96)00483-0
41.
41. Y.-T. Chen and S. M. Xie, J. Nanomater. 2012 (2012).
http://dx.doi.org/10.1155/2012/486284
42.
42. S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, and Y. C. Chang, J. Appl. Phys. 99, 053701 (2006).
http://dx.doi.org/10.1063/1.2174113
43.
43. S. N. Kaul, W. Kettler, and M. Rosenberg, Phys. Rev. B 33, 4987 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.4987
44.
44. O. Touraghe, M. Khatami, A. Menny, H. Lassri, and K. Nouneh, Physica B 403, 2093 (2008).
http://dx.doi.org/10.1016/j.physb.2007.11.018
45.
45. S. N. Kaul, W. Kettler, and M. Rosenberg, Phys. Rev. B 35, 7153 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.7153
46.
46. H. Fujimori, S. Mitani, T. Ikeda, and S. Ohnuma, IEEE Trans. Magn. 30, 4779 (1994).
http://dx.doi.org/10.1109/20.334219
47.
47. G. V. Swamy, H. Pandey, A. K. Srivastava, M. K. Dalai, K. K. Maurya, Rashmi, and R. K. Rakshit, AIP Adv. 3, 072129 (2013).
http://dx.doi.org/10.1063/1.4816811
48.
48. A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).
http://dx.doi.org/10.1088/0022-3719/8/4/003
49.
49. T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Phys. Rev. B 23, 6172 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.6172
50.
50. R. W. Simon, B. J. Dalrymple, D. Van Vechten, W. W. Fuller, and S. A. Wolf, Phys. Rev. B 36, 1962 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.1962
51.
51. K. M. Seemann, F. Freimuth, H. Zhang, S. Blügel, Y. Mokrousov, D. E. Bürgler, and C. M. Schneider, Phys. Rev. Lett. 107, 086603 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.086603
52.
52. T. McGuire and R. Potter, IEEE Trans. Magn. 11, 1018 (1975).
http://dx.doi.org/10.1109/TMAG.1975.1058782
53.
53. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4891276
Loading
/content/aip/journal/aplmater/2/7/10.1063/1.4891276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/7/10.1063/1.4891276
2014-07-30
2016-09-25

Abstract

Magnetic nanotubes (NTs) are interesting for magnetic memory and magnonic applications. We report magnetotransport experiments on individual 10 to 20 μm long Ni and CoFeB NTs with outer diameters ranging from 160 to 390 nm and film thicknesses of 20 to 40 nm. The anisotropic magnetoresistance (AMR) effect studied from 2 K to room temperature (RT) amounted to 1.4% and 0.1% for Ni and CoFeB NTs, respectively, at RT. We evaluated magnetometric demagnetization factors of about 0.7 for Ni and CoFeB NTs having considerably different saturation magnetization. The relatively large AMR value of the Ni nanotubes is promising for RT spintronic applications. The large saturation magnetization of CoFeB is useful in different fields such as magnonics and scanning probe microscopy using nanotubes as magnetic tips.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/7/1.4891276.html;jsessionid=E3xykaTc6jCYDB3kxSiZ7-Qt.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/7/10.1063/1.4891276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/7/10.1063/1.4891276&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/7/10.1063/1.4891276'
Top,Right1,Right2,Right3,