Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Escrig, P. Landeros, D. Altbir, E. Vogel, and P. Vargas, J. Magn. Magn. Mater. 308, 233 (2007).
2. P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, and E. E. Vogel, Appl. Phys. Lett. 90, 102501 (2007).
3. P. Landeros, O. J. Suarez, A. Cuchillo, and P. Vargas, Phys. Rev. B 79, 024404 (2009).
4. P. Landeros and A. S. Núñez, J. Appl. Phys. 108, 033917 (2010).
5. M. Yan, C. Andreas, A. Kákay, F. García-Sánchez, and R. Hertel, Appl. Phys. Lett. 99, 122505 (2011).
6. M. Yan, A. Kákay, C. Andreas, and R. Hertel, Phys. Rev. B 88, 220412 (2013).
7. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
8. N. S. Dellas, J. Liang, B. J. Cooley, N. Samarth, and S. E. Mohney, Appl. Phys. Lett. 97, 072505 (2010).
9. J. Liang, J. Wang, A. Paul, B. J. Cooley, D. W. Rench, N. S. Dellas, S. E. Mohney, R. Engel-Herbert, and N. Samarth, Appl. Phys. Lett. 100, 182402 (2012).
10. M. Hilse, Y. Takagaki, J. Herfort, M. Ramsteiner, C. Herrmann, S. Breuer, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 95, 133126 (2009).
11. A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck, C. Back, and E. Reiger, Nano Lett. 9, 3860 (2009), see
12. X. Yu, H. Wang, D. Pan, J. Zhao, J. Misuraca, S. von Molnár, and P. Xiong, Nano Lett. 13, 1572 (2013), see
13. G. Tourillon, L. Pontonnier, J. P. Levy, and V. Langlais, Electrochem. Solid-State Lett. 3, 20 (2000).
14. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001).<1631::AID-ADMA1631>3.0.CO;2-R
15. Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004).
16. K. Nielsch, F. J. Castaño, C. A. Ross, and R. Krishnan, J. Appl. Phys. 98, 034318 (2005).
17. M. Daub, M. Knez, U. Goesele, and K. Nielsch, J. Appl. Phys. 101, 09J111 (2007).
18. J. Bachmann, Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gösele, and K. Nielsch, J. Am. Chem. Soc. 129, 9554 (2007).
19. M. Hilse, J. Herfort, B. Jenichen, A. Trampert, M. Hanke, P. Schaaf, L. Geelhaar, and H. Riechert, Nano Lett. 13, 6203 (2013).
20. D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou, Nano Lett. 4, 2151 (2004).
21. D. Rüffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler, Nanoscale 4, 4989 (2012).
22. D. P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, J. Arbiol, A. Fontcuberta i Morral, D. Grundler, and M. Poggio, Nano Lett. 12, 6139 (2012), see
23. A. Buchter, J. Nagel, D. Rüffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio, Phys. Rev. Lett. 111, 067202 (2013).
24. C. Butschkow, E. Reiger, A. Rudolph, S. Geißler, D. Neumaier, M. Soda, D. Schuh, G. Woltersdorf, W. Wegscheider, and D. Weiss, Phys. Rev. B 87, 245303 (2013).
25. H. Yu, R. Huber, T. Schwarze, F. Brandl, T. Rapp, P. Berberich, G. Duerr, and D. Grundler, Appl. Phys. Lett. 100, 262412 (2012).
26. J. Nagel, A. Buchter, F. Xue, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, D. Rüffer, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler, Phys. Rev. B 88, 064425 (2013).
27. E. Uccelli, J. Arbiol, C. Magen, P. Krogstrup, E. Russo-Averchi, M. Heiss, G. Mugny, F. Morier-Genoud, J. Nygard, J. R. Morante, and A. Fontcuberta i Morral, Nano Lett. 11, 3827 (2011).
28. E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, Nanoscale 4, 1486 (2012).
29.See supplementary material at for an overview of relevant geometrical parameters of investigated nanotubes. [Supplementary Material]
30. M. de la Mata, C. Magen, J. Gazquez, M. I. B. Utama, M. Heiss, S. Lopatin, F. Furtmayr, C. J. Fernández-Rojas, B. Peng, J. R. Morante, R. Rurali, M. Eickhoff, A. Fontcuberta i Morral, Q. Xiong, and J. Arbiol, Nano Lett. 12, 2579 (2012), see
31. A. T. Hindmarch, C. J. Kinane, M. MacKenzie, J. N. Chapman, M. Henini, D. Taylor, D. A. Arena, J. Dvorak, B. J. Hickey, and C. H. Marrows, Phys. Rev. Lett. 100, 117201 (2008).
32. T. Schwarze and D. Grundler, Appl. Phys. Lett. 102, 222412 (2013).
34. A. Aharoni, L. Pust, and M. Kief, J. Appl. Phys. 87, 6564 (2000).
35.Nanotubes are non-ellipsoidal magnetic elements for which an inhomogeneous internal field is expected when H is perpendicular to the long axis. This would make position-dependent demagnetization factors necessary when describing the micromagnetic behavior in detail. This is why we define the so-called magnetometric demagnetization factor.
36. D. Rüffer, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 99, 142112 (2011).
37. Y. Q. Jia, S. Y. Chou, and J.-G. Zhu, J. Appl. Phys. 81, 5461 (1997).
38. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
39. T. G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge, Phys. Rev. B 51, 283 (1995).
40. S. Tsunashima, M. Jimbo, Y. Imada, and K. Komiyama, J. Magn. Magn. Mater. 165, 111 (1997).
41. Y.-T. Chen and S. M. Xie, J. Nanomater. 2012 (2012).
42. S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, and Y. C. Chang, J. Appl. Phys. 99, 053701 (2006).
43. S. N. Kaul, W. Kettler, and M. Rosenberg, Phys. Rev. B 33, 4987 (1986).
44. O. Touraghe, M. Khatami, A. Menny, H. Lassri, and K. Nouneh, Physica B 403, 2093 (2008).
45. S. N. Kaul, W. Kettler, and M. Rosenberg, Phys. Rev. B 35, 7153 (1987).
46. H. Fujimori, S. Mitani, T. Ikeda, and S. Ohnuma, IEEE Trans. Magn. 30, 4779 (1994).
47. G. V. Swamy, H. Pandey, A. K. Srivastava, M. K. Dalai, K. K. Maurya, Rashmi, and R. K. Rakshit, AIP Adv. 3, 072129 (2013).
48. A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).
49. T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Phys. Rev. B 23, 6172 (1981).
50. R. W. Simon, B. J. Dalrymple, D. Van Vechten, W. W. Fuller, and S. A. Wolf, Phys. Rev. B 36, 1962 (1987).
51. K. M. Seemann, F. Freimuth, H. Zhang, S. Blügel, Y. Mokrousov, D. E. Bürgler, and C. M. Schneider, Phys. Rev. Lett. 107, 086603 (2011).
52. T. McGuire and R. Potter, IEEE Trans. Magn. 11, 1018 (1975).
53. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).

Data & Media loading...


Article metrics loading...



Magnetic nanotubes (NTs) are interesting for magnetic memory and magnonic applications. We report magnetotransport experiments on individual 10 to 20 μm long Ni and CoFeB NTs with outer diameters ranging from 160 to 390 nm and film thicknesses of 20 to 40 nm. The anisotropic magnetoresistance (AMR) effect studied from 2 K to room temperature (RT) amounted to 1.4% and 0.1% for Ni and CoFeB NTs, respectively, at RT. We evaluated magnetometric demagnetization factors of about 0.7 for Ni and CoFeB NTs having considerably different saturation magnetization. The relatively large AMR value of the Ni nanotubes is promising for RT spintronic applications. The large saturation magnetization of CoFeB is useful in different fields such as magnonics and scanning probe microscopy using nanotubes as magnetic tips.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd