Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/7/10.1063/1.4891277
1.
1. K. J. Kirk, Contemp. Phys. 41, 61 (2000).
http://dx.doi.org/10.1080/001075100181187
2.
2. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1
3.
3. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1042
4.
4. K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Phys. Rev. B 65, 024414 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.024414
5.
5. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
6.
6. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat. Mater. 6, 270 (2007).
http://dx.doi.org/10.1038/nmat1867
7.
7. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).
http://dx.doi.org/10.1126/science.1075302
8.
8. B. Pigeau, G. De Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, L. W. Molenkamp, V. S. Tiberkevich, and A. N. Slavin, Appl. Phys. Lett. 96, 132506 (2010).
http://dx.doi.org/10.1063/1.3373833
9.
9. R. P. Cowburn, J. Magn. Magn. Mater. 242–245, 505 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01086-1
10.
10. A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, Nat. Nanotech. 4, 528 (2009).
http://dx.doi.org/10.1038/nnano.2009.143
11.
11. V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Nat. Phys. 3, 498 (2007).
http://dx.doi.org/10.1038/nphys619
12.
12. T. Nozaki, H. Kubota, S. Yuasa, M. Shiraishi,T. Shinjo, and Y. Suzuki, Appl. Phys. Lett. 95, 022513 (2009).
http://dx.doi.org/10.1063/1.3177188
13.
13. S. Kasai, K. Nakano, K. Kondou, N. Ohshima, K. Kobayashi, and T. Ono, Appl. Phys. Exp. 1, 091302 (2008).
http://dx.doi.org/10.1143/APEX.1.091302
14.
14. D. B. Carlton, N. C. Emley, E. Tuchfeld, and J. Bokor, Nano Lett. 8, 4173 (2008).
http://dx.doi.org/10.1021/nl801607p
15.
15. E. J. Kim, J. L. R. Watts, B. Harteneck, A. Scholl, A. Young, A. Doran, and Y. Suzuki, J. Appl. Phys. 109, 07D712 (2011).
http://dx.doi.org/10.1063/1.3544510
16.
16. A. P. Ramirez, J. Phy.-Condens. Matter 9, 8171 (1997).
http://dx.doi.org/10.1088/0953-8984/9/39/005
17.
17. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1997).
http://dx.doi.org/10.1080/000187399243455
18.
18. L. C. Phillips, M. Ghidini, X. Moya, F. Maccherozzi, S. S. Dhesi, and N. D. Mathur, J. Phys. D 46, 032002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/3/032002
19.
19. D. Ruzmetov, Y. Seo, L. J. Belenky, D. M. Kim, X. Ke, H. Sun, V. Chandrasekhar, C.-B. Eom, M. S. Rzchowski, and X. Pan, Adv. Mater. 17, 2869 (2005).
http://dx.doi.org/10.1002/adma.200501240
20.
20. Y. Takamura, R. V. Chopdekar, Y. Suzuki, A. Scholl, A. Doran, J. A. Liddle, and B. Harteneck, Nano Lett. 6, 1287 (2006).
http://dx.doi.org/10.1021/nl060615f
21.
21. M. Mathews, R. Jansen, G. Rijnders, J. C. Lodder, and D. H. A. Blank, Phys. Rev. B 80, 064408 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064408
22.
22. R. W. Schwartz, T. Schneller, and R. Waser, Compt. Rend. Chim. 7, 433 (2004).
http://dx.doi.org/10.1016/j.crci.2004.01.007
23.
23. I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe, Appl. Phys. Lett. 83, 2211 (2003).
http://dx.doi.org/10.1063/1.1611258
24.
24. X. Obradors, T. Puig, M. Gibert, A. Queraltó, J. Zabaleta, and N. Mestres, Chem. Soc. Rev. 43, 2200 (2014).
http://dx.doi.org/10.1039/c3cs60365b
25.
25. T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)00708-9
26.
26. J. Zabaleta, M. Jaafar, P. Abellán, C. Montón, O. Iglesias-Freire, F. Sandiumenge, C. A. Ramos, R. D. Zysler, T. Puig, A. Asenjo, N. Mestres, and X. Obradors, J. Appl. Phys. 111, 024307 (2012).
http://dx.doi.org/10.1063/1.3677985
27.
27. J. Zabaleta, S. Valencia, F. Kronast, C. Moreno, P. Abellán, J. Gázquez, H. Sepehri-Amin, F. Sandiumenge, T. Puig, N. Mestres, and X. Obradors, Nanoscale 5, 2990 (2013).
http://dx.doi.org/10.1039/c3nr33346a
28.
28. M. Jaafar, J. Gomez-Herrero, A. Gil, P. Ares, M. Vázquez, and A. Asenjo, Ultramicroscopy 109, 693 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.01.007
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4891277 for MFM image of self-assembled LSMO nanoislands with different vortex core orientation and numerical simulations of the magnetization of different aspect ratio LSMO nanoislands under in-plane magnetic field. [Supplementary Material]
30.
30. J. M. García-Martín, A. Thiaville, J. Miltat, T. Okuno, L. Vila, and L. Piraux, J. Phys. D 37, 965 (2004).
http://dx.doi.org/10.1088/0022-3727/37/7/001
31.
31. J. Raabe, R. Pulwey, R. Sattler, T. Schweinbock, J. Zweck, and D. Weiss, J. Appl. Phys. 88, 4437 (2000).
http://dx.doi.org/10.1063/1.1289216
32.
32. M. Jaafar, R. Yanes, D. Perez de Lara, O. Chubykalo-Fesenko, A. Asenjo, E. M. Gonzalez, J. V. Anguita, M. Vazquez, and J. L. Vicent, Phys. Rev. B 81, 054439 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054439
33.
33. L. D. Buda, I. L. Prejbeanu, M. Demand, U. Ebels, and K. Ounadjela, IEEE Trans. Magn. 37, 2061 (2001).
http://dx.doi.org/10.1109/20.951053
34.
34. S. Agramunt-Puig, N. Del-Valle, C. Navau, and A. Sanchez, Appl. Phys. Lett. 104, 012407 (2014).
http://dx.doi.org/10.1063/1.4861423
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/7/10.1063/1.4891277
Loading
/content/aip/journal/aplmater/2/7/10.1063/1.4891277
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/7/10.1063/1.4891277
2014-07-28
2016-09-30

Abstract

The magnetic vortex formation at room temperature and its evolution under in-plane magnetic field is studied in chemically grown self-assembled LaSrMnO nanoislands of less than 200 nm in width. We use variable field magnetic force microscopy and numerical simulations to confirm that the vortex state is ubiquitous in these square-base pyramid shape epitaxial LaSrMnO nanostructures, and that it requires in-plane magnetic fields below 40 kA/m to be annihilated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/7/1.4891277.html;jsessionid=lQ-0zRqA_NWsS43k9pCqxwiE.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/7/10.1063/1.4891277&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/7/10.1063/1.4891277&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/7/10.1063/1.4891277'
Top,Right1,Right2,Right3,