Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/8/10.1063/1.4885255
1.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
2.
2. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
3.
3. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature (London) 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
4.
4. D. Liu and T. L. Kelly, Nat. Photon. 8, 133 (2014).
http://dx.doi.org/10.1038/nphoton.2013.342
5.
5. J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 14, 724 (2014).
http://dx.doi.org/10.1021/nl403997a
6.
6. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014).
http://dx.doi.org/10.1021/jz500113x
7.
7. A. Maurano, R. Hamilton, C. G. Shuttle, A. M. Ballantyne, J. Nelson, B. O’Regan, W. Zhang, I. McCulloch, H. Azimi, M. Morana, C. J. Brabec, and J. R. Durrant, Adv. Mater. 22, 4987 (2010).
http://dx.doi.org/10.1002/adma.201002360
8.
8. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, and V. Dyakonov, Adv. Mater. 24, 4381 (2012).
http://dx.doi.org/10.1002/adma.201200874
9.
9. C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).
http://dx.doi.org/10.1088/0034-4885/73/9/096401
10.
10. H. Bässler, Phys. Stat. Sol. B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
11.
11. P. Langevin, Ann. Chim. Phys. 28, 433 (1903).
12.
12. A. Pivrikas, G. Juška, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Österbacka, Phys. Rev. Lett. 94, 176806 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176806
13.
13. C. Deibel, A. Baumann, and V. Dyakonov, Appl. Phys. Lett. 93, 163303 (2008).
http://dx.doi.org/10.1063/1.3005593
14.
14. G. Lakhwani, A. Rao, and R. H. Friend, Annu. Rev. Phys. Chem. 65, 557 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103615
15.
15. J. Gorenflot, M. C. Heiber, A. Baumann, J. Lorrmann, M. Gunz, A. Kämpgen, V. Dyakonov, and C. Deibel, J. Appl. Phys. 115, 144502 (2014).
http://dx.doi.org/10.1063/1.4870805
16.
16. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photon. 8, 128 (2014).
http://dx.doi.org/10.1038/nphoton.2013.341
17.
17. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
18.
18. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
19.
19. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
20.
20. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
21.
21. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
22.
22. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
http://dx.doi.org/10.1002/adma.201305172
23.
23. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, Nano Lett. 14, 1000 (2014).
http://dx.doi.org/10.1021/nl404454h
24.
24. Y. Zhao, A. M. Nardes, and K. Zhu, J. Phys. Chem. Lett. 5, 490 (2014).
http://dx.doi.org/10.1021/jz500003v
25.
25. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Gratzel, and J.-E. Moser, Nature Photon. 8, 250 (2014).
http://dx.doi.org/10.1038/nphoton.2013.374
26.
26. V. Roiati, S. Colella, G. Lerario, L. De Marco, A. Rizzo, A. Listorti, and G. Gigli, Energy Environ. Sci. 7, 1889 (2014).
http://dx.doi.org/10.1039/c3ee43991g
27.
27. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, J. Phys. Chem. Lett. 4, 1532 (2013).
http://dx.doi.org/10.1021/jz400638x
28.
28. V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14, 888 (2014).
http://dx.doi.org/10.1021/nl404252e
29.
29. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, J. Am. Chem. Soc. 136, 5189 (2014).
http://dx.doi.org/10.1021/ja412583t
30.
30. O. Malinkiewicz, M. Lenes, H. Brine, and H. J. Bolink, RSC Adv. 2, 3335 (2012).
http://dx.doi.org/10.1039/c2ra20075a
31.
31. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, Energy Environ. Sci. 7, 994 (2014).
http://dx.doi.org/10.1039/c3ee43619e
32.
32. D. Rauh, C. Deibel, and V. Dyakonov, Adv. Funct. Mater. 22, 3371 (2012).
http://dx.doi.org/10.1002/adfm.201103118
33.
33. C. G. Shuttle, R. Hamilton, J. Nelson, B. C. O’Regan, and J. R. Durrant, Adv. Funct. Mater. 20, 698 (2010).
http://dx.doi.org/10.1002/adfm.200901734
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4885255
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4885255
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4885255
2014-06-25
2016-09-27

Abstract

We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CHNHPbI) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CHNHPbI solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PCBM and PTB7:PCBM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4885255.html;jsessionid=4R-3UZUPbUgzlnwdpXj-RCss.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4885255&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/8/10.1063/1.4885255&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/8/10.1063/1.4885255'
Top,Right1,Right2,Right3,