Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
2. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501, 395 (2013).
3. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature (London) 499, 316 (2013).
4. D. Liu and T. L. Kelly, Nat. Photon. 8, 133 (2014).
5. J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 14, 724 (2014).
6. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014).
7. A. Maurano, R. Hamilton, C. G. Shuttle, A. M. Ballantyne, J. Nelson, B. O’Regan, W. Zhang, I. McCulloch, H. Azimi, M. Morana, C. J. Brabec, and J. R. Durrant, Adv. Mater. 22, 4987 (2010).
8. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, and V. Dyakonov, Adv. Mater. 24, 4381 (2012).
9. C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).
10. H. Bässler, Phys. Stat. Sol. B 175, 15 (1993).
11. P. Langevin, Ann. Chim. Phys. 28, 433 (1903).
12. A. Pivrikas, G. Juška, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Österbacka, Phys. Rev. Lett. 94, 176806 (2005).
13. C. Deibel, A. Baumann, and V. Dyakonov, Appl. Phys. Lett. 93, 163303 (2008).
14. G. Lakhwani, A. Rao, and R. H. Friend, Annu. Rev. Phys. Chem. 65, 557 (2014).
15. J. Gorenflot, M. C. Heiber, A. Baumann, J. Lorrmann, M. Gunz, A. Kämpgen, V. Dyakonov, and C. Deibel, J. Appl. Phys. 115, 144502 (2014).
16. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photon. 8, 128 (2014).
17. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
18. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).
19. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
20. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
21. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
22. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
23. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, Nano Lett. 14, 1000 (2014).
24. Y. Zhao, A. M. Nardes, and K. Zhu, J. Phys. Chem. Lett. 5, 490 (2014).
25. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Gratzel, and J.-E. Moser, Nature Photon. 8, 250 (2014).
26. V. Roiati, S. Colella, G. Lerario, L. De Marco, A. Rizzo, A. Listorti, and G. Gigli, Energy Environ. Sci. 7, 1889 (2014).
27. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, J. Phys. Chem. Lett. 4, 1532 (2013).
28. V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14, 888 (2014).
29. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, J. Am. Chem. Soc. 136, 5189 (2014).
30. O. Malinkiewicz, M. Lenes, H. Brine, and H. J. Bolink, RSC Adv. 2, 3335 (2012).
31. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, Energy Environ. Sci. 7, 994 (2014).
32. D. Rauh, C. Deibel, and V. Dyakonov, Adv. Funct. Mater. 22, 3371 (2012).
33. C. G. Shuttle, R. Hamilton, J. Nelson, B. C. O’Regan, and J. R. Durrant, Adv. Funct. Mater. 20, 698 (2010).

Data & Media loading...


Article metrics loading...



We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CHNHPbI) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CHNHPbI solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PCBM and PTB7:PCBM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd