Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N.-G. Park, J. Phys. Chem. Lett. 4, 24232429 (2013).
2. H. J. Snaith, J. Phys. Chem. Lett. 4(21), 36233630 (2013).
4. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131(17), 60506051 (2009).
5. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3(10), 40884093 (2011).
6. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, Md. K. Nazeeruddin, M. Gratzel, and S. I. Seok, Nat. Photonics 7(6), 486491 (2013).
7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341344 (2013).
8. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344347 (2013).
9. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26(10), 15841589 (2014).
10. V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Nat. Commun. 5, 3586 (2014).
11. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6(6), 17391743 (2013).
12. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature (London) 499(7458), 316319 (2013).
13. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, and H. J. Snaith, Nano Lett. 13(7), 31243128 (2013).
14. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13(4), 17641769 (2013).
15. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, J. Am. Chem. Soc. 135(51), 1908719090 (2013).
16. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24(1), 151157 (2014).
17. B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, Adv. Mater. 26(13), 20412046 (2014).
18. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501(7467), 395398 (2013).
19. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013).
20. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8(2), 16741680 (2014).
21. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy. Mater. Sol. Cells 90(20), 35203530 (2006).
22. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, Energy Environ. Sci. 7(3), 11421147 (2014).
23. A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nano Lett. 14(5), 25912596 (2014).
24. J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett. 14(2), 724730 (2014).
25. A. Katoch, H. Kim, T. Hwang, and S. Kim, J. Sol-Gel Sci. Technol. 61(1), 7782 (2012).
26. M. Saliba, K. W. Tan, H. Sai, D. T. Moore, T. Scott, W. Zhang, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic-Inorganic Lead Trihalide Perovskites,” J. Phys. Chem. C (published online).
27. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Inc., Minnesota, USA, 1995).
28. F. Werfel and O. Brummer, Phys. Scr. 28(1), 9296 (1983).
29.NIST X-ray Photoelectron Spectroscopy Database, Version 4.1,
30. G. K. Wertheim and S. B. Dicenzo, J. Electron Spectrosc. 37(1), 5767 (1985).
31. C. De Dobbelaere, J. Mullens, A. Hardy, and M. K. Van Bael, Thermochim. Acta 520(1–2), 121133 (2011).
32. D. Liu and T. L. Kelly, Nat. Photon. 8(2), 133138 (2014).

Data & Media loading...


Article metrics loading...



Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO electron collection layer that requires a high temperature treatment (>450 °C), which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO/CHNHPbIClpoly(3-hexylthiophene)/Ag architecture.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd