1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/8/10.1063/1.4890246
1.
1. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nat. Commun. 5, 3461 (2014).
http://dx.doi.org/10.1038/ncomms4461
2.
2. V. Gonzalez-Pedro, E. J. Juárez-Pérez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14, 888 (2014).
http://dx.doi.org/10.1021/nl404252e
3.
3. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014).
http://dx.doi.org/10.1021/jz500113x
4.
4. J. Even, L. Pedesseau, and C. Katan, J. Phys. Chem. C 118, 11566 (2014).
http://dx.doi.org/10.1021/jp503337a
5.
5. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
6.
6. A. Glazer, Acta Cryst. B 28, 3384 (1972).
http://dx.doi.org/10.1107/S0567740872007976
7.
7. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, 1977).
8.
8. J. Starkiewicz, L. Sosnowski, and O. Simpson, Nature (London) 158, 28 (1946).
http://dx.doi.org/10.1038/158028a0
9.
9. V. M. Fridkin and B. N. Popov, Sov. Phys. Usp. 21, 981 (1978).
http://dx.doi.org/10.1070/PU1978v021n12ABEH005722
10.
10. G. Neumark, Phys. Rev. 125, 838 (1962).
http://dx.doi.org/10.1103/PhysRev.125.838
11.
11. H. R. Johnson, R. H. Williams, and C. H. B. Mee, J. Phys. D: Appl. Phys. 8, 1530 (1975).
http://dx.doi.org/10.1088/0022-3727/8/13/015
12.
12. R. von Baltz, Ferroelectrics 35, 131 (1981).
http://dx.doi.org/10.1080/00150198108017675
13.
13. A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).
http://dx.doi.org/10.1063/1.453467
14.
14. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. Chem. Sol. 53, 935 (1992).
http://dx.doi.org/10.1016/0022-3697(92)90121-S
15.
15. F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, Phys. Rev. B 89, 155204 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155204
16.
16. R. Wasylishen, O. Knop, and J. Macdonald, Sol. Stat. Commun. 56, 581 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90959-7
17.
17. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. Chem. Sol. 51, 1383 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90021-7
18.
18. Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Japan 71, 1694 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1694
19.
19. J. J. Choi, X. Yang, Z. M. Norman, S. J. Billinge, and J. S. Owen, Nano Lett. 14, 127 (2014).
http://dx.doi.org/10.1021/nl403514x
20.
20. M. Zushi, A. Suzuki, T. Akiyama, and T. Oku, Chem. Lett. 43, 916 (2014).
http://dx.doi.org/10.1246/cl.140127
21.
21. F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
22.
22.See http://dx.doi.org/10.6084/m9.figshare.1061490 for video: Methyl ammonium lead iodide (MAPI) pervoskite - 2x2x2 supercell md, 2014.
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4890246 for details. [Supplementary Material]
24.
24. P. W. Anderson, Theory of Ferroelectric Behaviour of Barium Titanate, A Career in Theoretical Physics (reprinted) (World Scientific, 1994).
25.
25. W. Cochran, Adv. Phys. 9, 387 (1960).
http://dx.doi.org/10.1080/00018736000101229
26.
26. W. Cochran, Adv. Phys. 10, 401 (1961).
http://dx.doi.org/10.1080/00018736100101321
27.
27. J. R. McConnell, Rotational Brownian Motion and Dielectric Theory (Academic Press, 1980).
28.
28. R. P. Feynman, Phys. Rev. 97, 660 (1955).
http://dx.doi.org/10.1103/PhysRev.97.660
29.
29. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. (published online).
http://dx.doi.org/10.1039/C4EE01138D
30.
30. M. H. Du, J. Mater. Chem. A 2, 9091 (2014).
http://dx.doi.org/10.1039/c4ta01198h
31.
31. W.-J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
http://dx.doi.org/10.1063/1.4864778
32.
32. M. Maeda, M. Hattori, A. Hotta, and I. Suzuki, J. Phys. Soc. Jpn. 66, 1508 (1997).
http://dx.doi.org/10.1143/JPSJ.66.1508
33.
33. N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, J. Comput. Chem. 32, 2319 (2011).
http://dx.doi.org/10.1002/jcc.21787
34.
34. M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 330 (1998).
35.
35. O. Tange, login: The USENIX Magazine 36, 42 (2011).
36.
36.See https://github.com/WMD-Bath/StarryNight for Monte Carlo codes, 2014.
37.
37.See https://github.com/jarvist/MAPI-MD-analysis for molecular dynamics analysis codes and data, 2014.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4890246
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4890246
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4890246
2014-07-21
2014-12-19

Abstract

We report a model describing the molecular orientation disorder in CHNHPbI, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4890246.html;jsessionid=4qhvcbaun5dl.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4890246&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4890246
10.1063/1.4890246
SEARCH_EXPAND_ITEM