1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/8/10.1063/1.4891275
1.
1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
2.
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
3.
3. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature (London) 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
4.
4. M. Liu, M. B. Johnston, and H. J. Snaith, Nature (London) 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
5.
5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
6.
6. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3, 4088 (2011).
http://dx.doi.org/10.1039/c1nr10867k
7.
7. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photon. 7, 486 (2013).
http://dx.doi.org/10.1038/nphoton.2013.80
8.
8. N.-G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
http://dx.doi.org/10.1021/jz400892a
9.
9. H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
http://dx.doi.org/10.1021/jz4020162
10.
10. H.-S. Kim, S. H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).
http://dx.doi.org/10.1021/jp409025w
11.
11. S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, Angew. Chem. Inter. Ed. 53, 2812 (2014).
http://dx.doi.org/10.1002/anie.201308719
12.
12. P. P. Boix, K. Nonomura, N. Mathews, and S. G. Mhaisalkar, Mater. Today 17, 16 (2014).
http://dx.doi.org/10.1016/j.mattod.2013.12.002
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4891275 for the real device configuration and for the Nyquist plots and their fits based on an equivalent circuit. [Supplementary Material]
14.
14. R. Steitz, W. Jaeger, and R. V. Klitzing, Langmuir 17, 4471 (2001).
http://dx.doi.org/10.1021/la010168d
15.
15. C. C. Coleman, H. Goldwhite, and W. Tikkanen, Chem. Mater. 10, 2794 (1998).
http://dx.doi.org/10.1021/cm980211r
16.
16. K. Liang, D. B. Mitzi, and M. T. Prikas, Chem. Mater. 10, 403 (1998).
http://dx.doi.org/10.1021/cm970568f
17.
17. A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, Chem. Lett. 43, 711713 (2014).
http://dx.doi.org/10.1246/cl.140074
18.
18. K. Zhu, S.-R Jang, and A. J. Frank, J. Phys. Chem. Lett. 2, 1070 (2011).
http://dx.doi.org/10.1021/jz200290c
19.
19. D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, RCS Adv. 3, 18762 (2013).
http://dx.doi.org/10.1039/C3RA43228A
20.
20. Y. Zhao, A. M. Nardes, and K. Zhu, J. Phys. Chem. Lett. 5, 490 (2014).
http://dx.doi.org/10.1021/jz500003v
21.
21. F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 131, 558 (2009).
http://dx.doi.org/10.1021/ja805850q
22.
22. H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, and J. Bisquert, Nat. Commun. 4, 2242 (2013).
http://dx.doi.org/10.1038/ncomms3242
23.
23. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.-G. Park, Nano Lett. 13, 2412 (2013).
http://dx.doi.org/10.1021/nl400286w
24.
24. A. Zaban, M. Greenshtein, and J. Bisquert, Chem. Phys. Chem. 4, 859 (2003).
http://dx.doi.org/10.1002/cphc.200200615
25.
25. T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks, and H. J. Snaith, J. Phys. Chem. Lett. 5, 1096 (2014).
http://dx.doi.org/10.1021/jz500209g
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4891275
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4891275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4891275
2014-07-28
2014-12-28

Abstract

Perovskite CHNHPbI light absorber is deposited on the mesoporous TiO layer via one-step and two-step coating methods and their photovoltaic performances are compared. One-step coating using a solution containing CHNHI and PbI shows average power conversion efficiency (PCE) of 7.5%, while higher average PCE of 13.9% is obtained from two-step coating method, mainly due to higher voltage and fill factor. The coverage, pore-filling, and morphology of the deposited perovskite are found to be critical in photovoltaic performance of the mesoporous TiO based perovskite solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4891275.html;jsessionid=2muc5co6c9oj0.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4891275&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4891275
10.1063/1.4891275
SEARCH_EXPAND_ITEM