Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643647 (2012).
3. T. C. Sum and N. Mathews, “Advancements in perovskite solar cells: Photophysics behind the photovoltaics,” Energy Environ. Sci. 7, 25182534 (2014).
4. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 90199038 (2013).
5. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 15841589 (2014).
6. C. S. Ponseca, T. J. Savenije, M. A. Abdellah, K. Zheng, A. P. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundstrom, “Organometal halide perovskite solar cell materials rationalized – Ultrafast charge generation, high and microsecond-long balanced mobilities and slow recombination,” J. Am. Chem. Soc. 136(14), 5189 (2014).
7. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342(6156), 344347 (2013).
8. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341344 (2013).
9. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Gratzel, and J.-E. Moser, “Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells,” Nat. Photon. 8, 250255 (2014).
10. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci. 7, 339407 (2014).
11. V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
12. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx,” J. Phys. Chem. Lett. 5, 13001306 (2014).
13. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 17641769 (2013).
14. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982988 (2014).
15. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, “First principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 1390213913 (2013).
16. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, “Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications,” J. Phys. Chem. Lett. 4(17), 29993005 (2013).
17. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25(22), 46134618 (2013).
18. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, “DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells,” Phys. Status Solidi RRL 8(1), 3135 (2014).
19. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 25842590 (2014).
20. P. Umari, E. Mosconi, and F. De Angelis, “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications,” Sci. Rep. 4, 4467 (2014).
21. Y. Wang, T. Gould, J. F. Dobson, H. Zhang, H. Yang, X. Yao, and H. Zhao, “Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3,” Phys. Chem. Chem. Phys. 16, 14241429 (2014).
22. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, “Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3,” Physica B 201(0), 427430 (1994).
23. D. Weber, “CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur,” Z. Naturforsch. B 33, 14431445 (1978).
24. A. Poglitsch and D. Weber, “Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 63736378 (1987).
25. Y. Kawamura, H. Mashiyama, and K. Hasebe, “Structural study on cubic–Tetragonal transition of CH3NH3PbI3,” J. Phys. Soc. Jpn. 71(7), 16941697 (2002).
26. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1, 56285641 (2013).
27. R. Wasylishen, O. Knop, and J. Macdonald, “Cation rotation in methylammonium lead halides,” Solid State Commun. 56(7), 581582 (1985).
28. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, “Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II),” J. Phys. Chem. Solids 51(12), 13831395 (1990).
29. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, “Dielectric study of CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. Solids 53(7), 935939 (1992).
30. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, “Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes,” Appl. Phys. Exp. 7(3), 032302 (2014).
31. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395398 (2013).
32. M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768773 (1962).
33. W. von der Osten and H. Stolz, “Localized exciton states in silver halides,” J. Phys. Chem. Solids, 51(7), 765791 (1990).
34. R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679716 (1990).
35. K. Saito, T. Kurosawa, T. Akai, S. Yokoyama, H. Morioka, T. Oikawa, and H. Funakubo, “Characterization of epitaxial Pb(Zrx,Ti1-x)O3 thin films with composition near the morphotropic phase boundary,” MRS Proc. 748, U134 (2002).
36. S. Yokoyama, Y. Honda, H. Morioka, T. Oikawa, H. Funakubo, T. Iijima, H. Matsuda, and K. Saito, “Large piezoelectric response in (111)-oriented epitaxial Pb(Zr,Ti)O3 films consisting of mixed phases with rhombohedral and tetragonal symmetry,” Appl. Phys. Lett. 83(12), 24082410 (2003).
37. M. B. Kelman, P. C. McIntyre, B. C. Hendrix, S. M. Bilodeau, J. F. Roeder, and S. Brennan, “Structural analysis of coexisting tetragonal and rhombohedral phases in polycrystalline Pb(Zr0.35Ti0.65)O3 thin films,” J. Mater. Res. 18, 173179 (2003).
38. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, “A strain-driven morphotropic phase boundary in BiFeO3,” Science 326(5955), 977980 (2009).
39. Z. Chen, L. You, C. Huang, Y. Qi, J. Wang, T. Sritharan, and L. Chen, “Nanoscale domains in strained epitaxial BiFeO3 thin Films on LaSrAlO4 substrate,” Appl. Phys. Lett. 96(25), 252903 (2010).
40. L. Ehm, L. A. Borkowski, J. B. Parise, S. Ghose, and Z. Chen, “Evidence of tetragonal nanodomains in the high-pressure polymorph of BaTiO3,” Appl. Phys. Lett. 98(2), 021901 (2011).
41. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7, 22692275 (2014).
42. F. Deschler, M. Price, S. Pathak, L. Klintberg, D. D. Jarausch, R. Higler, S. Huettner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically-pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 14211426 (2014).
43. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476480 (2014).

Data & Media loading...


Article metrics loading...



The optoelectronic properties of the mixed hybrid lead halide perovskite CHNHPbICl have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CHNHPbICl exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CHNHPbI. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd