Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/8/10.1063/1.4891595
1.
1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
2.
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643647 (2012).
http://dx.doi.org/10.1126/science.1228604
3.
3. T. C. Sum and N. Mathews, “Advancements in perovskite solar cells: Photophysics behind the photovoltaics,” Energy Environ. Sci. 7, 25182534 (2014).
http://dx.doi.org/10.1039/C4EE00673A
4.
4. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 90199038 (2013).
http://dx.doi.org/10.1021/ic401215x
5.
5. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 15841589 (2014).
http://dx.doi.org/10.1002/adma.201305172
6.
6. C. S. Ponseca, T. J. Savenije, M. A. Abdellah, K. Zheng, A. P. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundstrom, “Organometal halide perovskite solar cell materials rationalized – Ultrafast charge generation, high and microsecond-long balanced mobilities and slow recombination,” J. Am. Chem. Soc. 136(14), 5189 (2014).
http://dx.doi.org/10.1021/ja412583t
7.
7. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342(6156), 344347 (2013).
http://dx.doi.org/10.1126/science.1243167
8.
8. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341344 (2013).
http://dx.doi.org/10.1126/science.1243982
9.
9. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Gratzel, and J.-E. Moser, “Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells,” Nat. Photon. 8, 250255 (2014).
http://dx.doi.org/10.1038/nphoton.2013.374
10.
10. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci. 7, 339407 (2014).
http://dx.doi.org/10.1039/C3EE43161D
11.
11. V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
http://dx.doi.org/10.1038/ncomms4586
12.
12. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx,” J. Phys. Chem. Lett. 5, 13001306 (2014).
http://dx.doi.org/10.1021/jz500434p
13.
13. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 17641769 (2013).
http://dx.doi.org/10.1021/nl400349b
14.
14. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982988 (2014).
http://dx.doi.org/10.1039/c3ee43822h
15.
15. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, “First principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 1390213913 (2013).
http://dx.doi.org/10.1021/jp4048659
16.
16. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, “Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications,” J. Phys. Chem. Lett. 4(17), 29993005 (2013).
http://dx.doi.org/10.1021/jz401532q
17.
17. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25(22), 46134618 (2013).
http://dx.doi.org/10.1021/cm402919x
18.
18. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, “DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells,” Phys. Status Solidi RRL 8(1), 3135 (2014).
http://dx.doi.org/10.1002/pssr.201308183
19.
19. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14, 25842590 (2014).
http://dx.doi.org/10.1021/nl500390f
20.
20. P. Umari, E. Mosconi, and F. De Angelis, “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications,” Sci. Rep. 4, 4467 (2014).
http://dx.doi.org/10.1038/srep04467
21.
21. Y. Wang, T. Gould, J. F. Dobson, H. Zhang, H. Yang, X. Yao, and H. Zhao, “Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3,” Phys. Chem. Chem. Phys. 16, 14241429 (2014).
http://dx.doi.org/10.1039/C3CP54479F
22.
22. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, “Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3,” Physica B 201(0), 427430 (1994).
http://dx.doi.org/10.1016/0921-4526(94)91130-4
23.
23. D. Weber, “CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur,” Z. Naturforsch. B 33, 14431445 (1978).
24.
24. A. Poglitsch and D. Weber, “Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 63736378 (1987).
http://dx.doi.org/10.1063/1.453467
25.
25. Y. Kawamura, H. Mashiyama, and K. Hasebe, “Structural study on cubic–Tetragonal transition of CH3NH3PbI3,” J. Phys. Soc. Jpn. 71(7), 16941697 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1694
26.
26. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1, 56285641 (2013).
http://dx.doi.org/10.1039/c3ta10518k
27.
27. R. Wasylishen, O. Knop, and J. Macdonald, “Cation rotation in methylammonium lead halides,” Solid State Commun. 56(7), 581582 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90959-7
28.
28. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, “Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II),” J. Phys. Chem. Solids 51(12), 13831395 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90021-7
29.
29. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, “Dielectric study of CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. Solids 53(7), 935939 (1992).
http://dx.doi.org/10.1016/0022-3697(92)90121-S
30.
30. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, “Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes,” Appl. Phys. Exp. 7(3), 032302 (2014).
http://dx.doi.org/10.7567/APEX.7.032302
31.
31. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395398 (2013).
http://dx.doi.org/10.1038/nature12509
32.
32. M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768773 (1962).
http://dx.doi.org/10.1103/PhysRev.127.768
33.
33. W. von der Osten and H. Stolz, “Localized exciton states in silver halides,” J. Phys. Chem. Solids, 51(7), 765791 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90148-9
34.
34. R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679716 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90144-5
35.
35. K. Saito, T. Kurosawa, T. Akai, S. Yokoyama, H. Morioka, T. Oikawa, and H. Funakubo, “Characterization of epitaxial Pb(Zrx,Ti1-x)O3 thin films with composition near the morphotropic phase boundary,” MRS Proc. 748, U134 (2002).
http://dx.doi.org/10.1557/PROC-748-U13.4
36.
36. S. Yokoyama, Y. Honda, H. Morioka, T. Oikawa, H. Funakubo, T. Iijima, H. Matsuda, and K. Saito, “Large piezoelectric response in (111)-oriented epitaxial Pb(Zr,Ti)O3 films consisting of mixed phases with rhombohedral and tetragonal symmetry,” Appl. Phys. Lett. 83(12), 24082410 (2003).
http://dx.doi.org/10.1063/1.1611273
37.
37. M. B. Kelman, P. C. McIntyre, B. C. Hendrix, S. M. Bilodeau, J. F. Roeder, and S. Brennan, “Structural analysis of coexisting tetragonal and rhombohedral phases in polycrystalline Pb(Zr0.35Ti0.65)O3 thin films,” J. Mater. Res. 18, 173179 (2003).
http://dx.doi.org/10.1557/JMR.2003.0024
38.
38. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, “A strain-driven morphotropic phase boundary in BiFeO3,” Science 326(5955), 977980 (2009).
http://dx.doi.org/10.1126/science.1177046
39.
39. Z. Chen, L. You, C. Huang, Y. Qi, J. Wang, T. Sritharan, and L. Chen, “Nanoscale domains in strained epitaxial BiFeO3 thin Films on LaSrAlO4 substrate,” Appl. Phys. Lett. 96(25), 252903 (2010).
http://dx.doi.org/10.1063/1.3456729
40.
40. L. Ehm, L. A. Borkowski, J. B. Parise, S. Ghose, and Z. Chen, “Evidence of tetragonal nanodomains in the high-pressure polymorph of BaTiO3,” Appl. Phys. Lett. 98(2), 021901 (2011).
http://dx.doi.org/10.1063/1.3535611
41.
41. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7, 22692275 (2014).
http://dx.doi.org/10.1039/c4ee01358a
42.
42. F. Deschler, M. Price, S. Pathak, L. Klintberg, D. D. Jarausch, R. Higler, S. Huettner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically-pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 14211426 (2014).
http://dx.doi.org/10.1021/jz5005285
43.
43. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13, 476480 (2014).
http://dx.doi.org/10.1038/nmat3911
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4891595
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4891595
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4891595
2014-08-06
2016-09-26

Abstract

The optoelectronic properties of the mixed hybrid lead halide perovskite CHNHPbICl have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CHNHPbICl exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CHNHPbI. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4891595.html;jsessionid=Lj01RUjr2rk30vgxVVMAw1Ea.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4891595&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/8/10.1063/1.4891595&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/8/10.1063/1.4891595'
Top,Right1,Right2,Right3,