Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/8/10.1063/1.4893236
1.
1. T. M. Tritt and M. A. Subramanian, Mater. Res. Bull. 31, 188 (2006).
http://dx.doi.org/10.1557/mrs2006.44
2.
2. M. N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckle, Z. Kristallogr. 225, 463 (2010).
http://dx.doi.org/10.1524/zkri.2010.1320
3.
3. T. Rosenthal, M. N. Schneider, C. Stiewe, M. Döblinger, and O. Oeckler, Chem. Mater. 23, 4349 (2011).
http://dx.doi.org/10.1021/cm201717z
4.
4. E.-R. Sittner, K. S. Siegert, P. Jost, C. Schlockermann, F. R. L. Lange, and M. Wuttig, Phys. Status Solidi A 210, 147 (2013).
http://dx.doi.org/10.1002/pssa.201228397
5.
5. L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, M. A. Kretova, E. S. Avilov, and V. S. Zemskov, Inorg. Mater. 37, 421 (2001).
http://dx.doi.org/10.1023/A:1017519625907
6.
6. P. P. Konstantinov, L. E. Shelimova, E. S. Avilov, M. A. Kretova, and V. S. Zemskov, Inorg. Mater. 37, 788 (2001).
http://dx.doi.org/10.1023/A:1017613804472
7.
7. T. Matsunaga, N. Yamada, K. Kifune, and Y. Kubota, J. Crystallogr. Soc. Jpn. 51, 292 (2009).
http://dx.doi.org/10.5940/jcrsj.51.292
8.
8. D. G. Cahill, S. K. Watson, and R. O. Pohl, Mater. Res. Bull. 27, 161 (1992).
http://dx.doi.org/10.1016/0025-5408(92)90209-I
9.
9. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
http://dx.doi.org/10.1126/science.1159725
10.
10. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 110, 13261 (2013).
http://dx.doi.org/10.1073/pnas.1305735110
11.
11. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature (London) 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
12.
12. Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G. J. Snyder, Adv. Mater. 23, 5674 (2011).
http://dx.doi.org/10.1002/adma.201103153
13.
13. J. Horák, Z. Starý, and P. Lošták, J. Phys. Chem. Solids 49, 191 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90050-9
14.
14. V. Petricek and M. Desek, JANA2000, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000.
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4893236 for TG-DTA profile of GeSb6Te10 (Fig. S1), Le Bail fits of 0, 3, 5, and 10 at.% In-substituted GeSb6Te10 at room-temperature (Fig. S2), crystal structure and transport properties of GeInxSb6-xTe10 (x = 0, 0.18, 0.3, and 0.6; corresponding to In-0, In-3, In-5, and In-10, respectively) (Table SI), bulk density and relative density of 0, 3, 5, and 10 at.% In-substituted GeSb6Te10 (Table SII), temperature dependence of κ of 0, 3, 5, and 10 at. % In-substituted GeSb6Te10 (In-0, In-3, In-5, and In-10, respectively) (Fig. S3), and low temperature Cp data and T3Cp plot of In-0 (Fig. S4). [Supplementary Material]
16.
16. T. Matsunaga, R. Kojima, N. Yamada, T. Fujita, K. Kifune, Y. Kubota, and M. Takata, Acta Crystallogr., Sect. B 66, 407 (2010).
http://dx.doi.org/10.1107/S0108768110024080
17.
17. Y. E. Putri, C. Wan, Y. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Scr. Mater. 66, 895 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.02.010
18.
18. K. Kifune, T. Fujita, T. Tachizawa, Y. Kubota, N. Yamada, and T. Matsunaga, Cryst. Res. Technol. 48, 1011 (2013).
http://dx.doi.org/10.1002/crat.201300252
19.
19. M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, Phys. Rev. 133, A1143 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A1143
20.
20. Y. Pei, H. Wang, and G. J. Snyder, Adv. Mater. 24, 6125 (2012).
http://dx.doi.org/10.1002/adma.201202919
21.
21. C. J. Vineis, T. C. Harman, S. D. Calawa, M. P. Walsh, R. E. Reeder, R. Singh, and A. Shakouri, Phys. Rev. B 77, 235202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235202
22.
22. V. I. Fitsul, Heavily Doped Semiconductors (Plenum Press, New York, 1969), p.155.
23.
23. J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 2001).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4893236
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4893236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4893236
2014-08-19
2016-09-29

Abstract

We studied the crystal structure and thermoelectric properties of polycrystalline GeInSbTe ( = 0, 0.18, 0.3, and 0.6). Rietveld and Le Bail analyses showed that all compositions crystallized in trigonal structures with a 51-layer period. Substituting In decreased both the lattice and electronic thermal conductivity, as well as markedly increased the Seebeck coefficient. We ascribed this increase to increases in the effective mass of the carriers, likely caused by the formation of additional energy states near the Fermi level. In GeInSbTe, we found a maximum of 0.75 at 710 K, 1.9 times higher than that of GeSbTe.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4893236.html;jsessionid=jZYq4F50c0_QyQYTyHvzu0wo.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4893236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/8/10.1063/1.4893236&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/8/10.1063/1.4893236'
Top,Right1,Right2,Right3,