Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/8/10.1063/1.4893339
1.
1. R. H. Hammond, Adv. Supercond. VIII, Proceedings 8th International Symposium Superconductivity (ISS) (Springer, Hamamatsu, Japan) 1029 (1996).
http://dx.doi.org/10.2172/951094
2.
2. J. W. Lee and S. I. Yoo, Supercond. Cryog. 14, 5 (2012).
http://dx.doi.org/10.9714/sac.2012.14.4.005
3.
3. R. Nemetschek, W. Prusseit, B. Holzapfel, J. Eickemeyer, B. DeBoer, U. Miller, and E. Maher, Physica C 372–376, 880 (2005).
4.
4. V. Matias, E. J. Rowley, Y. Coulter, B. Maiorov, T. Holesinger, C. Yung, V. Glyantsev, and B. Moeckly, Supercond. Sci. Technol. 23, 014018 (2010).
http://dx.doi.org/10.1088/0953-2048/23/1/014018
5.
5. M. R. Beasley and R. H. Hammond, DOE Annual Report (Award No. DE-FC07-03ID14510), 2005.
6.
6. G. Koster, J. Huh, R. H. Hammond, and M. R. Beasley, Appl. Phys. Lett. 90, 261917 (2007).
http://dx.doi.org/10.1063/1.2753118
7.
7. M. R. Beasley and R. H. Hammond, Final DOE Scientific/Technical Report 2003–2008. (Award No. DE-FC07-03ID14510), 2009.
8.
8. J. W. Lee, J. H. Lee, S. H. Moon, and S. I. Yoo, Supercond. Cryog. 14, 2831 (2012).
http://dx.doi.org/10.9714/sac.2012.14.4.028
9.
9. J. H. Lee, H. Lee, J. W. Lee, S. M. Choi, S. I. Yoo, and S. H. Moon, Supercond. Sci. Technol. 27, 044018 (2014).
http://dx.doi.org/10.1088/0953-2048/27/4/044018
10.
10. S. S. Oh, H. S. Ha, H. S. Kim, R. K. Ko, K. J. Song, D. W. Ha, T. H. Kim, N. J. Lee, D. Youm, J. S. Yang, H. K. Kim, K. K. Yu, S. H. Moon, K. P. Ko, and S. I. Yoo, Supercond. Sci. Technol. 21, 034003 (2008).
http://dx.doi.org/10.1088/0953-2048/21/3/034003
11.
11. S. Moon, Private Comnmunication, 2013.
12.
12. J. L. MacManus-Driscoll, J. C. Bravman, and R. B. Beyers, Physica C 241, 401 (1995).
http://dx.doi.org/10.1016/0921-4534(94)02369-7
13.
13. J. A. G. Nelstrop and J. L. MacManus-Driscoll, Physica C 377, 585 (2002).
http://dx.doi.org/10.1016/S0921-4534(02)00630-5
14.
14. T. Ohnishi, J. Huh, R. H. Hammond, and W. Jo, J. Mater. Res. 19, 977 (2004).
http://dx.doi.org/10.1557/JMR.2004.0127
15.
15. S. M. Choi, J. W. Lee, S. H. Moon, and S. I. Yoo, Mater. Res. Soc. Symp. Proc. 2012, 1434.
http://dx.doi.org/10.1557/opl.2012.1406
16.
16. W. Wong-Ng and L. P. Cook, J. Res. Natl. Inst. Stand. Technol. 103, 379 (1998).
http://dx.doi.org/10.6028/jres.103.023
17.
17. X. Qi, Z. Lockman, Y. Bugoslavsky, A. Kursumovic, R. Tomov, B. A. Glowacki, J. Evetts, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 17, 1144 (2004).
http://dx.doi.org/10.1088/0953-2048/17/10/010
18.
18. D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.4038
19.
19. L. Civale, B. Maiorov, A. Serquis, J. O. Willis, J. Y. Coulter, H. Wan, Q. X. Jia, P. N. Arendt, J. L. Mac-Manus Driscoll, M. P. Maley, and S. R. Foltyn, Appl. Phys. Lett. 84, 2121 (2004).
http://dx.doi.org/10.1063/1.1655707
20.
20. T. G. Holesinger, L. Civale, B. Maiorov, D. M. Feldmann, J. Y. Coulter, D. J. Miller, V. A. Maroni, Z. Chen, D. C. Larbalestier, R. Feenstra, X. Li, Y. Huang, T. Kodenkandath, W. Zhang, M. W. Rupich, and A. P. Malozemoff, Adv. Mater. 20, 391 (2008).
http://dx.doi.org/10.1002/adma.200700919
21.
21. A. Vostner, S. Tonies, H. W. Weber, Y. S. Cheng, A. Kursumovic, J. E. Evetts, S. H. Mennema, and H. W. Zandbergen, Supercond. Sci. Technol. 16, 1152 (2003).
http://dx.doi.org/10.1088/0953-2048/16/10/305
22.
22. A. Vostner, Y. F. Sun, H. W. Weber, Y. S. Cheng, A. Kuršumović, and J. E. Evetts, Physica C 399, 120 (2003).
http://dx.doi.org/10.1016/S0921-4534(03)01299-1
23.
23. B. Maiorov, A. Kursumovic, L. Stan, H. Zhou, H. Wang, L. Civale, R. Feenstra, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 20, S223 (2007).
http://dx.doi.org/10.1088/0953-2048/20/9/S17
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4893339 for showing x-ray and cross sectional TEM analyses of the films of this study. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4893339
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4893339
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4893339
2014-08-22
2016-09-30

Abstract

We report on compositional tuning to create excellent field-performance of in “self-doped,” GdBa Cu O (GdBCO) coated conductors grown by ultrafast reactive co-evaporation. In order to give excess liquid and GdO, the overall compositions were all Ba-poor and Cu-rich compared to GdBCO. The precise composition was found to be critical to the current carrying performance. The most copper-rich composition had an optimum self-field of 3.2 MA cm−2. A more Gd-rich composition had the best in-field performance because of the formation of low coherence, splayed GdO nanoparticles, giving (77 K, 1 T) of over 1 MA cm−2 and (77 K, 5 T) of over 0.1 MA cm−2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4893339.html;jsessionid=C9QGoX-OthKEd9-QBVhQp7rn.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4893339&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/8/10.1063/1.4893339&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/8/10.1063/1.4893339'
Top,Right1,Right2,Right3,