1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Bandgap calculations and trends of organometal halide perovskites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/8/10.1063/1.4893495
1.
1. I. Borriello, G. Cantele, and D. Ninno, Phys. Rev. B 77, 235214 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235214
2.
2. F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, and R. Vaglio, Phys. Rev. B 77, 045129 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045129
3.
3. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
http://dx.doi.org/10.1021/ja411509g
4.
4. J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).
http://dx.doi.org/10.1021/ja411014k
5.
5. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4, 897 (2013).
http://dx.doi.org/10.1021/jz400348q
6.
6. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).
http://dx.doi.org/10.1021/jz402706q
7.
7. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, J. Am. Chem. Soc. 135, 19087 (2013).
http://dx.doi.org/10.1021/ja410659k
8.
8. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
9.
9. G. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-I. Jang, and B. Huang, Nature (London) 392, 694 (1998).
http://dx.doi.org/10.1038/33647
10.
10. W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S. Curtarolo, ACS Combinat. Sci. 13, 382 (2011).
http://dx.doi.org/10.1021/co200012w
11.
11. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 2241 (2011).
http://dx.doi.org/10.1021/jz200866s
12.
12. N. M. O'Boyle, C. M. Campbell, and G. R. Hutchison, J. Phys. Chem. C 115, 16200 (2011).
http://dx.doi.org/10.1021/jp202765c
13.
13. I. Y. Kanal, S. G. Owens, J. S. Bechtel, and G. R. Hutchison, J. Phys. Chem. Lett. 4, 1613 (2013).
http://dx.doi.org/10.1021/jz400215j
14.
14. I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
http://dx.doi.org/10.1039/c1ee02717d
15.
15. I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 9034 (2012).
http://dx.doi.org/10.1039/c2ee22341d
16.
16. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035109
17.
17. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen et al., J. Phys. Condens. Matter 22, 253202 (2010).
http://dx.doi.org/10.1088/0953-8984/22/25/253202
18.
18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
19.
19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
20.
20. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
21.
21. Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235116
22.
22. O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, Phys. Rev. A 51, 1944 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.1944
23.
23. M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, Phys. Rev. B 82, 115106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115106
24.
24. F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B 87, 235132 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235132
25.
25. I. E. Castelli, J. M. Garca-Lastra, F. Hüser, K. S. Thygesen, and K. W. Jacobsen, New J. Phys. 15, 105026 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/105026
26.
26. I. E. Castelli, F. Hüser, M. Pandey, H. Li, K. S. Thygesen, B. Seger, A. Jain, K. Persson, G. Ceder, and K. W. Jacobsen, “New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations,” Adv. Energy Mater. (in press).
http://dx.doi.org/10.1002/aenm.201400915
27.
27. P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 (2014).
http://dx.doi.org/10.1038/srep04467
28.
28. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14, 3608 (2014).
http://dx.doi.org/10.1021/nl5012992
29.
29. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
30.
30. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
http://dx.doi.org/10.1039/c3ee43822h
31.
31. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
32.
32. G. Papavassiliou and I. Koutselas, Synthetic Metals 71, 1713 (1995).
http://dx.doi.org/10.1016/0379-6779(94)03017-Z
33.
33. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
http://dx.doi.org/10.1103/PhysRev.84.1232
34.
34. Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, Dalton Trans. 40, 5563 (2011).
http://dx.doi.org/10.1039/c0dt01601b
35.
35. Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Jpn. 71, 1694 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1694
36.
36. K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda, and Y. Furukawa, Bull. Chem. Soc. Jpn. 71, 127 (1998).
http://dx.doi.org/10.1246/bcsj.71.127
37.
37. T. Sakudo, H. Unoki, Y. Fujii, J. Kobayashi, and M. Yamada, Phys. Lett. A 28, 542 (1969).
http://dx.doi.org/10.1016/0375-9601(69)90094-2
38.
38. D. E. Scaife, P. F. Weller, and W. G. Fisher, J. Solid State Chem. 9, 308 (1974).
http://dx.doi.org/10.1016/0022-4596(74)90088-7
39.
39. S. P. Singh and P. Nagarjuna, Dalton Trans. 43, 5247 (2014).
http://dx.doi.org/10.1039/c3dt53503g
40.
40. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, Energy Environ. Sci. 6, 1480 (2013).
http://dx.doi.org/10.1039/c3ee40343b
41.
41. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014).
http://dx.doi.org/10.1039/c3ta13606j
42.
42. R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
http://dx.doi.org/10.1063/1.1749394
43.
43. R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, and S. G. Ebbinghaus, Dyes Pigments 76, 70 (2008).
http://dx.doi.org/10.1016/j.dyepig.2006.08.029
44.
44. A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun. 180, 1392 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.02.003
45.
45.We have calculated the GLLB-SC and G0W0 gaps for the MA pure systems in the cubic phase before the geometry optimization. The GLLB-SC and G0W0 calculated gaps are 2.27 and 2.30 eV for MASnCl3, 1.25 and 1.29 eV for MASnBr3, 0.70 and 0.89 eV for MASnI3, 3.52 and 3.59 eV for MAPbCl3, 2.88 and 2.83 eV for MAPbBr3, and 2.29 and 2.27 eV for MAPbI3.
46.
46.BSE calculations were performed on top of G0W0 results. Both BSE and G0W0 calculations were performed by means of the Yambo code44 using as input electronic wavefunctions and energies from conventional DFT at PBE level results from the Quantum Espresso code. G0W0 calculations were performed including bands 50 eV above the Fermi level, in a 8 × 8 × 8 Monkhorst-Pack k-point grid45 and using the Plasmon-Pole approximation.46 Local field effects were taken into account. BSE calculations only included the closest 4 valence bands and 5 conduction bands to the Fermi level.
47.
47.Δe–h is equal to 0.14, 0.11, and 0.15 eV for CsSnI3, CsSnBr3, and CsSnCl3, respectively, and to 0.12, 0.14, and 0.15 eV for CsPbI3, CsPbBr3, and CsPbCl3, respectively.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4893495
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4893495
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4893495
2014-08-26
2014-12-27

Abstract

Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CHNH, and HC(NH) as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4893495.html;jsessionid=1tfr0684hetjl.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4893495&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bandgap calculations and trends of organometal halide perovskites
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4893495
10.1063/1.4893495
SEARCH_EXPAND_ITEM