Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Borriello, G. Cantele, and D. Ninno, Phys. Rev. B 77, 235214 (2008).
2. F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, and R. Vaglio, Phys. Rev. B 77, 045129 (2008).
3. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
4. J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).
5. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4, 897 (2013).
6. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).
7. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, J. Am. Chem. Soc. 135, 19087 (2013).
8. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
9. G. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-I. Jang, and B. Huang, Nature (London) 392, 694 (1998).
10. W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S. Curtarolo, ACS Combinat. Sci. 13, 382 (2011).
11. J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 2241 (2011).
12. N. M. O'Boyle, C. M. Campbell, and G. R. Hutchison, J. Phys. Chem. C 115, 16200 (2011).
13. I. Y. Kanal, S. G. Owens, J. S. Bechtel, and G. R. Hutchison, J. Phys. Chem. Lett. 4, 1613 (2013).
14. I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
15. I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 9034 (2012).
16. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005).
17. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen et al., J. Phys. Condens. Matter 22, 253202 (2010).
18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
20. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
21. Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006).
22. O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, Phys. Rev. A 51, 1944 (1995).
23. M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, Phys. Rev. B 82, 115106 (2010).
24. F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B 87, 235132 (2013).
25. I. E. Castelli, J. M. Garca-Lastra, F. Hüser, K. S. Thygesen, and K. W. Jacobsen, New J. Phys. 15, 105026 (2013).
26. I. E. Castelli, F. Hüser, M. Pandey, H. Li, K. S. Thygesen, B. Seger, A. Jain, K. Persson, G. Ceder, and K. W. Jacobsen, “New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations,” Adv. Energy Mater. (in press).
27. P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 (2014).
28. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14, 3608 (2014).
29. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009).
30. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
31. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
32. G. Papavassiliou and I. Koutselas, Synthetic Metals 71, 1713 (1995).
33. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
34. Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, Dalton Trans. 40, 5563 (2011).
35. Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Jpn. 71, 1694 (2002).
36. K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda, and Y. Furukawa, Bull. Chem. Soc. Jpn. 71, 127 (1998).
37. T. Sakudo, H. Unoki, Y. Fujii, J. Kobayashi, and M. Yamada, Phys. Lett. A 28, 542 (1969).
38. D. E. Scaife, P. F. Weller, and W. G. Fisher, J. Solid State Chem. 9, 308 (1974).
39. S. P. Singh and P. Nagarjuna, Dalton Trans. 43, 5247 (2014).
40. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, Energy Environ. Sci. 6, 1480 (2013).
41. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014).
42. R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
43. R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, and S. G. Ebbinghaus, Dyes Pigments 76, 70 (2008).
44. A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun. 180, 1392 (2009).
45.We have calculated the GLLB-SC and G0W0 gaps for the MA pure systems in the cubic phase before the geometry optimization. The GLLB-SC and G0W0 calculated gaps are 2.27 and 2.30 eV for MASnCl3, 1.25 and 1.29 eV for MASnBr3, 0.70 and 0.89 eV for MASnI3, 3.52 and 3.59 eV for MAPbCl3, 2.88 and 2.83 eV for MAPbBr3, and 2.29 and 2.27 eV for MAPbI3.
46.BSE calculations were performed on top of G0W0 results. Both BSE and G0W0 calculations were performed by means of the Yambo code44 using as input electronic wavefunctions and energies from conventional DFT at PBE level results from the Quantum Espresso code. G0W0 calculations were performed including bands 50 eV above the Fermi level, in a 8 × 8 × 8 Monkhorst-Pack k-point grid45 and using the Plasmon-Pole approximation.46 Local field effects were taken into account. BSE calculations only included the closest 4 valence bands and 5 conduction bands to the Fermi level.
47.Δe–h is equal to 0.14, 0.11, and 0.15 eV for CsSnI3, CsSnBr3, and CsSnCl3, respectively, and to 0.12, 0.14, and 0.15 eV for CsPbI3, CsPbBr3, and CsPbCl3, respectively.

Data & Media loading...


Article metrics loading...



Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CHNH, and HC(NH) as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd