Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
2. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 11 (2009).
3. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).
4. T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, J. Appl. Phys. 108, 074107 (2010).
5. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
6. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
7. V. V. S. S. Sai Sunder, A. Halliyal, and A. M. Umarji, J. Mater. Res. 10, 1301 (1995).
8. T. Stevenson, T. P. Comyn, A. Daoud-Aladine, and A. J. Bell, J. Magn. Magn. Mater. 322, L64 (2010).
9. T. P. Comyn, T. Stevenson, and A. J. Bell, J. Phys. 128, 13 (2005).
10. V. Kothai, A. Senyshyn, and R. Ranjan, J. Appl. Phys. 113, 084102 (2013).
11. H. Kungl and M. J. Hoffmann, Acta Mater. 55, 5780 (2007).
12. T. P. Comyn, T. Stevenson, M. Al-Jawad, G. André, A. J. Bell, and R. Cywinski, J. Magn. Magn. Mater. 323, 2533 (2011).
13. Y. Matsuo and H. Sasaki, J. Am. Ceram. Soc. 48, 229 (1966).
14. K. Schönau, M. Knapp, H. Kungl, M. Hoffmann, and H. Fuess, Phys. Rev. B 76, 144112 (2007).
15. T. P. Comyn, T. Stevenson, M. Al-Jawad, S. L. Turner, R. I. Smith, W. G. Marshall, A. J. Bell, and R. Cywinski, Appl. Phys. Lett. 93, 232901 (2008).
16. W. Eerenstein, N. Mathur, and J. Scott, Nature (London) 442, 759 (2006).
17. S. Hull, R. Smith, W. David, A. Hannon, J. Mayers, and R. Cywinski, Physica B: Condens. Matter 180–181, 1000 (1992).
18.See supplementary material at for the experimental setup of the Polaris experiment; for complete diffraction patterns collected on Polaris; for an example of a WinPlot peak fitting profile; and for a antiferromagnetic diffraction peak intensity model. [Supplementary Material]
19. J. Rodriguez-Carvajal, Physica B: Condens. Matter 192, 55 (1993).
20. R. Ranjan, V. Kothai, A. Senyshyn, and H. Boysen, J. Appl. Phys. 109, 063522 (2011).
21. D. A. Hall, T. Mori, P. J. Withers, H. Kungl, M. J. Hoffmann, and J. Wright, Mater. Sci. Technol. 24, 927 (2008).
22. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, P. Withers, and T. Mori, Ceram. Interfaces 34, 679 (2008).
23. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326, 977 (2009).
24. T. P. Comyn, T. Stevenson, M. Al-Jawad, W. G. Marshall, R. I. Smith, J. Herrero-Albillos, R. Cywinski, and A. J. Bell, J. Appl. Phys. 113, 183910 (2013).
25. J. Bennett, A. J. Bell, T. J. Stevenson, R. I. Smith, I. Sterianou, I. M. Reaney, and T. P. Comyn, Mater. Lett. 94, 172 (2013).
26. A. Millis, Nature (London) 392, 147 (1998).
27. A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
28. D. Bulte and R. Langman, J. Magn. Magn. Mater. 251, 229 (2002).
29. I. E. Dzialoshinskii, J. Exptl. Theoret. Phys. (USSR) 33, 807808 (1957)
29.I. E. Dzialoshinskii, [Sov. Phys. JETP 33, 807 (1957)].
30. A. D. Sheikh, A. Fawzi, and V. L. Mathe, J. Magn. Magn. Mater. 323, 740 (2011).

Data & Media loading...


Article metrics loading...



Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO–0.3PbTiO, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an neutron diffraction experiment, we have demonstrated that this effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe3+ ion of +0.142 μ. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd