Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
2. O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011).
3. A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. B. Peng, Y. G. Peng, D. Karns, X. B. Zhu, Y. F. Ding, E. K. C. Chang, Y. J. Zhao, H. Zhou, K. Z. Gao, J. U. Thiele, M. Seigler, G. P. Ju, and E. Gage, IEEE Trans. Magn. 49, 779 (2013).
4. X. B. Wang, K. Z. Gao, H. Zhou, A. Itagi, M. Seigler, and E. Gage, IEEE Trans. Magn. 49, 686 (2013).
5. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).
6. S. H. Sun, Adv. Mater. 18, 393 (2006).
7. Q. Dong, G. Li, C.-L. Ho, M. Faisal, C.-W. Leung, P. W.-T. Pong, K. Liu, B.-Z. Tang, I. Manners, and W.-Y. Wong, Adv. Mater. 24, 1034 (2012).
8. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature (London) 420, 395 (2002).
9. Y. Liu, T. A. George, R. Skomski, and D. J. Sellmyer, Appl. Phys. Lett. 99, 172504 (2011).
10. D. Weller, O. Mosendz, G. Parker, S. Pisana, and T. S. Santos, Phys. Status Solidi A 210, 1245 (2013).
11. O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, J Appl. Phys. 111, 07B729 (2012).
12. H. J. Richter, A. Y. Dobin, R. T. Lynch, D. Weller, R. M. Brockie, O. Heinonen, K. Z. Gao, J. Xue, R. J. M. v. d. Veerdonk, P. Asselin, and M. F. Erden, Appl. Phys. Lett. 88, 222512 (2006).
13. A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy, and J. C. Scott, Phys. Rev. B 50, 3419 (1994).
14. R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp, and A. Cebollada, Appl. Phys. Lett. 69, 1166 (1996).
15. K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, and J. U. Thiele, J. Appl. Phys. 98, 033904 (2005).
16. D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
17. C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 85, 6660 (1999).
18. J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70, 224434 (2004).
19. X. Kou, X. Fan, R. K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, and J. Q. Xiao, Adv. Mater. 23, 1393 (2011).
20. D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. L. Vicent, and K. Liu, Sci. Rep. 4, 4204 (2014).
21. L.-W. Wang, W.-C. Shih, Y.-C. Wu, and C.-H. Lai, Appl. Phys. Lett. 101, 252403 (2012).
22. L.-W. Wang, Y.-C. Wu, and C.-H. Lai, J. Appl. Phys. 105, 07A713 (2009).
23.See supplementary material at for plan-view TEM images exploring the sample crystal structure and magnetic investigations of a second Fe28Cu27Pt45 series. [Supplementary Material]
24. I. D. Mayergoyz, Mathematical Models of Hysteresis (Springer-Verlag, New York, 1991).
25.The coercivity is smaller than FePt due to the Cu introduction, as shown in Ref. 16.
26. D. C. Berry and K. Barmak, J. Appl. Phys. 101, 014905 (2007).
27. J. Olamit, K. Liu, Z. P. Li, and I. K. Schuller, Appl. Phys. Lett. 90, 032510 (2007).
28. J. E. Davies, J. Wu, C. Leighton, and K. Liu, Phys. Rev. B 72, 134419 (2005).
29. R. K. Dumas, K. Liu, C. P. Li, I. V. Roshchin, and I. K. Schuller, Appl. Phys. Lett. 91, 202501 (2007).
30.The same approach can also be used to extract the reversible portion of the magnetization reversal, by extending the dataset to H<HR, as shown previously in C. Pike, Phys. Rev. B 68, 104424 (2003). For example, for the 300 °C sample which is predominantly the magnetically soft A1 phase, the integrated ρ yields a magnetization within 3% of the measured major loop saturation magnetization.
31.In the extreme case that a residual magentic soft phase is strongly exchange coupled to the hard phase, the FORC feature will be convoluted. Here, even for the 400 °C sample, there is still trace amount of FORC feature near HC = 0, indicating that the A1 phase is magnetically separated from the L10 phase.
32. B. Wang and K. Barmak, J. Appl. Phys. 109, 123916 (2011).
33. D. P. Hoydick, E. J. Palmiere, and W. A. Soffa, J. Appl. Phys. 81, 5624 (1997).
34. M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, T. L. Cheeks, and V. G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993).

Data & Media loading...


Article metrics loading...



The 1-1 phase transformation has been investigated in (001) FeCuPt thin films prepared by atomic-scale multilayer sputtering and rapid thermal annealing (RTA). Traditional x-ray diffraction is not always applicable in generating a true order parameter, due to non-ideal crystallinity of the 1 phase. Using the first-order reversal curve (FORC) method, the 1 and 1 phases are deconvoluted into two distinct features in the FORC distribution, whose relative intensities change with the RTA temperature. The 1 ordering takes place via a nucleation-and-growth mode. A magnetization-based phase fraction is extracted, providing a quantitative measure of the 1 phase homogeneity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd