1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Probing the A1 to L10 transformation in FeCuPt using the first order reversal curve method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/8/10.1063/1.4894197
1.
1. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
http://dx.doi.org/10.1109/20.824418
2.
2. O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011).
http://dx.doi.org/10.1002/adma.201002180
3.
3. A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. B. Peng, Y. G. Peng, D. Karns, X. B. Zhu, Y. F. Ding, E. K. C. Chang, Y. J. Zhao, H. Zhou, K. Z. Gao, J. U. Thiele, M. Seigler, G. P. Ju, and E. Gage, IEEE Trans. Magn. 49, 779 (2013).
http://dx.doi.org/10.1109/TMAG.2012.2219513
4.
4. X. B. Wang, K. Z. Gao, H. Zhou, A. Itagi, M. Seigler, and E. Gage, IEEE Trans. Magn. 49, 686 (2013).
http://dx.doi.org/10.1109/TMAG.2012.2221689
5.
5. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).
http://dx.doi.org/10.1126/science.287.5460.1989
6.
6. S. H. Sun, Adv. Mater. 18, 393 (2006).
http://dx.doi.org/10.1002/adma.200501464
7.
7. Q. Dong, G. Li, C.-L. Ho, M. Faisal, C.-W. Leung, P. W.-T. Pong, K. Liu, B.-Z. Tang, I. Manners, and W.-Y. Wong, Adv. Mater. 24, 1034 (2012).
http://dx.doi.org/10.1002/adma.201104171
8.
8. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature (London) 420, 395 (2002).
http://dx.doi.org/10.1038/nature01208
9.
9. Y. Liu, T. A. George, R. Skomski, and D. J. Sellmyer, Appl. Phys. Lett. 99, 172504 (2011).
http://dx.doi.org/10.1063/1.3656038
10.
10. D. Weller, O. Mosendz, G. Parker, S. Pisana, and T. S. Santos, Phys. Status Solidi A 210, 1245 (2013).
http://dx.doi.org/10.1002/pssa.201329106
11.
11. O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, J Appl. Phys. 111, 07B729 (2012).
http://dx.doi.org/10.1063/1.3680543
12.
12. H. J. Richter, A. Y. Dobin, R. T. Lynch, D. Weller, R. M. Brockie, O. Heinonen, K. Z. Gao, J. Xue, R. J. M. v. d. Veerdonk, P. Asselin, and M. F. Erden, Appl. Phys. Lett. 88, 222512 (2006).
http://dx.doi.org/10.1063/1.2209179
13.
13. A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy, and J. C. Scott, Phys. Rev. B 50, 3419 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.3419
14.
14. R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp, and A. Cebollada, Appl. Phys. Lett. 69, 1166 (1996).
http://dx.doi.org/10.1063/1.117383
15.
15. K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, and J. U. Thiele, J. Appl. Phys. 98, 033904 (2005).
http://dx.doi.org/10.1063/1.1991968
16.
16. D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. U. Thiele, C. H. Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
http://dx.doi.org/10.1063/1.4799651
17.
17. C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. Phys. 85, 6660 (1999).
http://dx.doi.org/10.1063/1.370176
18.
18. J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70, 224434 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.224434
19.
19. X. Kou, X. Fan, R. K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, and J. Q. Xiao, Adv. Mater. 23, 1393 (2011).
http://dx.doi.org/10.1002/adma.201003749
20.
20. D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. L. Vicent, and K. Liu, Sci. Rep. 4, 4204 (2014).
http://dx.doi.org/10.1038/srep04204
21.
21. L.-W. Wang, W.-C. Shih, Y.-C. Wu, and C.-H. Lai, Appl. Phys. Lett. 101, 252403 (2012).
http://dx.doi.org/10.1063/1.4772072
22.
22. L.-W. Wang, Y.-C. Wu, and C.-H. Lai, J. Appl. Phys. 105, 07A713 (2009).
http://dx.doi.org/10.1063/1.3067848
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4894197 for plan-view TEM images exploring the sample crystal structure and magnetic investigations of a second Fe28Cu27Pt45 series. [Supplementary Material]
24.
24. I. D. Mayergoyz, Mathematical Models of Hysteresis (Springer-Verlag, New York, 1991).
25.
25.The coercivity is smaller than FePt due to the Cu introduction, as shown in Ref. 16.
26.
26. D. C. Berry and K. Barmak, J. Appl. Phys. 101, 014905 (2007).
http://dx.doi.org/10.1063/1.2403835
27.
27. J. Olamit, K. Liu, Z. P. Li, and I. K. Schuller, Appl. Phys. Lett. 90, 032510 (2007).
http://dx.doi.org/10.1063/1.2431784
28.
28. J. E. Davies, J. Wu, C. Leighton, and K. Liu, Phys. Rev. B 72, 134419 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.134419
29.
29. R. K. Dumas, K. Liu, C. P. Li, I. V. Roshchin, and I. K. Schuller, Appl. Phys. Lett. 91, 202501 (2007).
http://dx.doi.org/10.1063/1.2807276
30.
30.The same approach can also be used to extract the reversible portion of the magnetization reversal, by extending the dataset to H<HR, as shown previously in C. Pike, Phys. Rev. B 68, 104424 (2003). For example, for the 300 °C sample which is predominantly the magnetically soft A1 phase, the integrated ρ yields a magnetization within 3% of the measured major loop saturation magnetization.
http://dx.doi.org/10.1103/PhysRevB.68.104424
31.
31.In the extreme case that a residual magentic soft phase is strongly exchange coupled to the hard phase, the FORC feature will be convoluted. Here, even for the 400 °C sample, there is still trace amount of FORC feature near HC = 0, indicating that the A1 phase is magnetically separated from the L10 phase.
32.
32. B. Wang and K. Barmak, J. Appl. Phys. 109, 123916 (2011).
http://dx.doi.org/10.1063/1.3592980
33.
33. D. P. Hoydick, E. J. Palmiere, and W. A. Soffa, J. Appl. Phys. 81, 5624 (1997).
http://dx.doi.org/10.1063/1.364619
34.
34. M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, T. L. Cheeks, and V. G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993).
http://dx.doi.org/10.1063/1.108642
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4894197
Loading
/content/aip/journal/aplmater/2/8/10.1063/1.4894197
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/8/10.1063/1.4894197
2014-08-28
2014-12-28

Abstract

The 1-1 phase transformation has been investigated in (001) FeCuPt thin films prepared by atomic-scale multilayer sputtering and rapid thermal annealing (RTA). Traditional x-ray diffraction is not always applicable in generating a true order parameter, due to non-ideal crystallinity of the 1 phase. Using the first-order reversal curve (FORC) method, the 1 and 1 phases are deconvoluted into two distinct features in the FORC distribution, whose relative intensities change with the RTA temperature. The 1 ordering takes place via a nucleation-and-growth mode. A magnetization-based phase fraction is extracted, providing a quantitative measure of the 1 phase homogeneity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/8/1.4894197.html;jsessionid=ajx7iyjq7skj.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/8/10.1063/1.4894197&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Probing the A1 to L10 transformation in FeCuPt using the first order reversal curve method
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/8/10.1063/1.4894197
10.1063/1.4894197
SEARCH_EXPAND_ITEM