Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London) 363, 524 (1993).
2. Y. Hasegawa and P. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
3. J. Xue, J. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Phys. Rev. Lett. 108, 016801 (2012).
4. P. T. Sprunger, L. Petersen, E. W. Plummer, E. Lægsgaard, and F. Besenbacher, Science 275, 1764 (1997).
5. J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Science 297, 1148 (2002).
6. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science 317, 219 (2007).
7. I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Magaud, K. Kern, and J. Y. Veuillen, Phys. Rev. Lett. 101, 206802 (2008).
8. P. Mallet, I. Brihuega, S. Bose, M. M. Ugeda, J. M. Gómez-Rodríguez, K. Kern, and J. Y. Veuillen, Phys. Rev. B 86, 045444 (2012).
9. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
10. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).
11. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401 (2007).
12. L. M. Zhang, Z. Q. Li, D. N. Basov, M. M. Fogler, Z. Hao, and M. C. Martin, Phys. Rev. B 78, 235408 (2008).
13. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Phys. Rev. Lett. 102, 037403 (2009).
14. A. B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 79, 115441 (2009).
15. A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).
16. K. Zou, X. Hong, and J. Zhu, Phys. Rev. B 84, 085408 (2011).
17. K. Lee, B. Fallahazad, J. Xue, T. Taniguchi, K. Watanabe, and E. Tutuc, Science 345, 58 (2014).
18. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotech. 5, 722 (2010).
19. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
20. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
21. M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy, Nat. Phys. 8, 382 (2012).
22. M. Yankowitz, J. I.-J. Wang, A. G. Birdwell, Y.-A. Chen, K. Watanabe, T. Taniguchi, P. Jacquod, P. San-Jose, P. Jarillo-Herrero, and B. J. LeRoy, “Electric field control of soliton motion and stacking in trilayer graphene,” Nat. Mat. (published online).
23.The sample used to produce Fig. 2 had a malfunctioning back gate, prohibiting measurements over the full range of gate voltages. The other sample, with a fully functioning gate, was used instead to produce Figs. 3 and 4.
24. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
25.The A and B graphene sublattices each contribute a slightly different phase to the standing wave. These two phases overlap significantly 10 nm and further from the interface, and only show small divergence close to the edge. Since both phases exhibit nearly equivalent overlapping wavelengths, we only plot the phase component from the A-sublattice for clarity.
26.We chose a zigzag edge termination for the trilayer region, but do not find the specific edge termination to significantly affect the wavelength either. Furthermore, we expect the wavelength to be independent of the conditions outside the bilayer edge; only the amplitude decay factor is expected to depend on the exact nature of the neighboring material.
27. E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013).
28. A. Deshpande, W. Bao, Z. Zhao, C. N. Lau, and B. J. LeRoy, Appl. Phys. Lett. 95, 243502 (2009).
29. G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Nat. Phys. 7, 649 (2011).
30. F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).
31.There is no simple algebraic expression for the dispersion when including γ4. Therefore, our best-fit is determined by hand. However, the results are quite sensitive to the free fitting parameters γ0 and γ4, therefore they are reasonably precise.

Data & Media loading...


Article metrics loading...



A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ = 3.1 eV, γ = 0.39 eV, and γ = 0.22 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd