Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4892849
1.
1. Y. Q. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. N. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, Nature (London) 472, 74 (2011).
http://dx.doi.org/10.1038/nature09979
2.
2. S. Bae, H. Kim, Y. B. Lee, X. F. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
3.
3. S. B. Yang, X. L. Feng, X. C. Wang, and K. Müllen, Angew. Chem., Int. Ed. 50, 5339 (2011).
http://dx.doi.org/10.1002/anie.201100170
4.
4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
5.
5. K. Muller, C. Faeh, and F. Diederich, Science 317, 1881 (2007).
http://dx.doi.org/10.1126/science.1131943
6.
6. P. Jeschke, ChemBioChem 5, 570 (2004).
http://dx.doi.org/10.1002/cbic.200300833
7.
7. A. Studer, Angew. Chem., Int. Ed. Engl. 51, 8950 (2012).
http://dx.doi.org/10.1002/anie.201202624
8.
8. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
9.
9. R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. J. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small 6, 2877 (2010).
http://dx.doi.org/10.1002/smll.201001555
10.
10. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
11.
11. B. Li, L. Zhou, D. Wu, H. L. Peng, K. Yan, Y. Zhou, and Z. F. Liu, ACS Nano 5, 5957 (2011).
http://dx.doi.org/10.1021/nn201731t
12.
12. J. Wu, L. Xie, Y. Li, H. Wang, Y. Ouyang, J. Guo, and H. Dai, J. Am. Chem. Soc. 133, 19668 (2011).
http://dx.doi.org/10.1021/ja2091068
13.
13. L. Zhou, L. S. Zhou, M. M. Yang, D. Wu, L. Liao, K. Yan, Q. Xie, Z. R. Liu, H. L. Peng, and Z. F. Liu, Small 9, 1388 (2013).
http://dx.doi.org/10.1002/smll.201202969
14.
14. X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang, and J. Wang, J. Am. Chem. Soc. 133, 16410 (2011).
http://dx.doi.org/10.1021/ja207775a
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4892849 for full experimental details. [Supplementary Material]
16.
16. T. Shirasaki, F. Moguet, L. Lozano, A. Tressaud, G. Nanse, and E. Papirer, Carbon 37, 1891 (1999).
http://dx.doi.org/10.1016/S0008-6223(99)00066-4
17.
17. N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard, and J. Hone, Nano Lett. 12, 2751 (2012).
http://dx.doi.org/10.1021/nl204481s
18.
18. S. H. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, and J. Zhu, Phys. Rev. B 81, 205435 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205435
19.
19. H. Zhang, E. Bekyarova, J.-W. Huang, Z. Zhao, W. Z. Bao, F. L. Wang, R. C. Haddon, and C. N. Lau, Nano Lett. 11, 4047 (2011).
http://dx.doi.org/10.1021/nl200803q
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4892849
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4892849
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4892849
2014-08-11
2016-09-28

Abstract

We demonstrate trifluoromethylation of graphene by copper-catalyzed free radical reaction. The covalent addition of CF to graphene, which changes the carbon atom hybridization from 2 to 3, and modifies graphene in a homogeneous and nondestructive manner, was verified with Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy reveals that CF groups are grafted to the basal plane of graphene, with about 4 at. % CF coverage. After trifluoromethylation, the average resistance increases by nearly one order of magnitude, and an energy gap of about 98 meV appears. The noninvasive and mild reaction to synthesize trifluoromethylated graphene paves the way for graphene's applications in electronics and biomedical areas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4892849.html;jsessionid=2tZFpBGOlGy5J8G30O_SlGXE.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4892849&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4892849&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4892849'
Top,Right1,Right2,Right3,