Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4892975
1.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Nature (London) 477, 45 (2011).
http://dx.doi.org/10.1038/nature10381
3.
3. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 6, 147150 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
4.
4. J. N. Coleman, M. L. A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568571 (2011).
http://dx.doi.org/10.1126/science.1194975
5.
5. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
6.
6. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano. Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
7.
7. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano. Lett. 10, 2245 (2010).
http://dx.doi.org/10.1021/nl101260j
8.
8. A. G. Loeser, Z. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).
http://dx.doi.org/10.1126/science.273.5273.325
9.
9. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
10.
10. M. Shikano, and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).
http://dx.doi.org/10.1063/1.1562337
11.
11. R. Funahashi, and M. Shikano, Appl. Phys. Lett. 81, 1459 (2002).
http://dx.doi.org/10.1063/1.1502190
12.
12. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53 (2003).
http://dx.doi.org/10.1038/nature01450
13.
13. R. Jin, B. C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.217001
14.
14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
15.
15. T. Fujii, I. Terasaki, T. Watanabe, and A. Matsuda, Jpn. J. Appl. Phys. 41, L783 (2002).
http://dx.doi.org/10.1143/JJAP.41.L783
16.
16. J. Sugiyama, Y. Ikedo, H. Nozaki, P. L. Russo, J. H. Brewer, E. J. Ansaldo, G. D. Morris, K. H. Chow, S. L. Stubbs, D. Andreica, A. Amato, T. Fujii, S. Okada, and I. Terasaki, Phys. Rev. B 78, 094422 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.094422
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4892975 for low-temperature localization in BSCO bulk and N ≥ 4 nanosheets, transport properties of BSCO nanosheets, Raman spectroscopy spectra of BSCO, and the effect of SiO2/Si substrate on BSCO. [Supplementary Material]
18.
18. N. F. Mott, Conduction in Non-Crystalline Materials (Charendon Press, Oxford 1993), p 150.
19.
19. T. Yamamoto, K. Uchinokura, and I. Tsukada, Phys. Rev. B 65, 184434 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.184434
20.
20. E. Carleschi, M. Malvestuto, M. Zacchigna, A. Nicolaou, V. Brouet, S. Hébert, H. Muguerra, D. Grebille, and F. Parmigiani, Phys. Rev. B 80, 035114 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035114
21.
21. M. Y. Han, J. C. Brant, and P. Kim, Phys. Rev. Lett. 104, 056801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.056801
22.
22. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).
http://dx.doi.org/10.1038/nphys781
23.
23. D. Gunlycke and D. A. Areshkin, C. T. White, Appl. Phys. Lett. 90, 142104 (2007).
http://dx.doi.org/10.1063/1.2718515
24.
24. D. V. Averin, and K. K. Likharev, Mesoscopic Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee and R. A. Webb (Plenum, New York, 1992).
25.
25. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990).
26.
26. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
27.
27. D. Yu, C. Wang, B. L. Wehrenberg, and P. Guyot-Sionnest, Phys. Rev. Lett. 92, 216802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.216802
28.
28. K. G. Lisunov, B. Raquet, H. Rakoto, J. M. Broto, E. Arushanov, X. Z. Xu, H. E. Alami, and C. D. Cavellin, J. Appl. Phys. 94, 5912 (2003).
http://dx.doi.org/10.1063/1.1603961
29.
29. C. Stampfer, J. Guttinger, S. Hellmuller, F. Molitor, K. Ensslin, and T. Ihn, Phys. Rev. Lett. 102, 056403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.056403
30.
30. K. Xu, L. D. Qin, and J. R. Heath, Nat. Nanotechnol. 4, 368 (2009).
http://dx.doi.org/10.1038/NNANO.2009.81
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4892975
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4892975
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4892975
2014-08-21
2016-10-01

Abstract

Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered BiSrCoO (BSCO) can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH) conduction throughout 2 K–300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4892975.html;jsessionid=7pSB1s7MF2U4bdiP3mxgUxni.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4892975&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4892975&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4892975'
Top,Right1,Right2,Right3,