Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4892976
1.
1. A. Fujishima and K. Honda, Nature (London) 238, 3738 (1972).
http://dx.doi.org/10.1038/238037a0
2.
2. R. Abe, J. Photochem. Photobiol. C: Photochem. Rev. 11, 179209 (2010).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.02.003
3.
3. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253278 (2009).
http://dx.doi.org/10.1039/b800489g
4.
4. J. G. Yu, L. F. Qi, and M. Jaroniec, J. Phys. Chem. C 114, 1311813125 (2010).
http://dx.doi.org/10.1021/jp104488b
5.
5. X. Chen and S. S. Mao, Chem. Rev. 107, 28912959 (2007).
http://dx.doi.org/10.1021/cr0500535
6.
6. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
7.
7. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, Nano Lett. 10, 12711275 (2010).
http://dx.doi.org/10.1021/nl903868w
8.
8. F. Wypych, Th. Weber, and R. Prins, Chem. Mater. 10, 723727 (1998).
http://dx.doi.org/10.1021/cm970402e
9.
9. A. N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, and G. Seifert, J. Phys. Chem. C 115, 2458624591 (2011).
http://dx.doi.org/10.1021/jp2076325
10.
10. C. Rovirat and M. Whangbo, Inorg. Chem. 32, 40944097 (1993).
http://dx.doi.org/10.1021/ic00071a021
11.
11. X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, and C. Li, Chem. Commun. 45364538 (2009).
http://dx.doi.org/10.1039/b907307h
12.
12. Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 134, 65756578 (2012).
http://dx.doi.org/10.1021/ja302846n
13.
13. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, J. Am. Chem. Soc. 130, 71767177 (2008).
http://dx.doi.org/10.1021/ja8007825
14.
14. J. Yang and H. S. Shin, J. Mater. Chem. A 2, 59795985 (2014).
http://dx.doi.org/10.1039/c3ta14151a
15.
15. H. Jiang, J. Phys. Chem. C 116, 76647671 (2012).
http://dx.doi.org/10.1021/jp300079d
16.
16. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).
http://dx.doi.org/10.1063/1.4774090
17.
17. M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, and S. Jin, Energy Environ. Sci. 7, 26082613 (2014).
http://dx.doi.org/10.1039/C4EE01329H
18.
18. Q. Ding, F. Meng, C. R. English, M. Caban-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, J. Am. Chem. Soc. 136, 85048507 (2014).
http://dx.doi.org/10.1021/ja5025673
19.
19. F. A. Frame and F. E. Osterloh, J. Phys. Chem. C 114, 1062810633 (2010).
http://dx.doi.org/10.1021/jp101308e
20.
20. X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, and C. Lee, J. Phys. Chem. C 114, 19631968 (2010).
http://dx.doi.org/10.1021/jp904350e
21.
21. U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, and C. N. R. Rao, Angew. Chem. Int. Ed. 52, 1305713061 (2013).
http://dx.doi.org/10.1002/anie.201306918
22.
22. A. M. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, J. Am. Chem. Soc. 135, 1027410277 (2013).
http://dx.doi.org/10.1021/ja404523s
23.
23. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater. 12, 850855 (2013).
http://dx.doi.org/10.1038/nmat3700
24.
24. S. J. Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Phys. Rev. B 44, 39553962 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3955
25.
25. J. Heising and M. G. Kanatzidis, J. Am. Chem. Soc. 121, 1172011732 (1999).
http://dx.doi.org/10.1021/ja991644d
26.
26. R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang, and R. F. Frindt, Phys. Rev. B 65, 125407 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.125407
27.
27. J. A. Wilson, F. J. Di Salvo, and S. Mahajan, Adv. Phys. 24, 117201 (1975).
http://dx.doi.org/10.1080/00018737500101391
28.
28. A. H. C. Neto, Phys. Rev. Lett. 86, 43824385 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4382
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4892976 for details of synthesis, characterization, and photocatalytic measurements. [Supplementary Material]
30.
30. U. Gupta, B. G. Rao, U. Maitra, B. E. Prasad, and C. N. R. Rao, Chem. Asian J. 9(5), 13111315 (2014).
http://dx.doi.org/10.1002/asia.201301537
31.
31. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
32.
32. D. Vanderbilt, Phys. Rev. B 41, 78927895 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
33.
33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
34. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
35.
35. P. E. Blöchl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
36.
36. G. Kresse and D. Joubert, Phys. Rev. B 59, 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
37.
37. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
38.
38. Y. Li, Y. Li, C. M. Araujo, W. Luo, and R. Ahuja, Catal. Sci. Technol. 3, 22142220 (2013).
http://dx.doi.org/10.1039/c3cy00207a
39.
39. J. K. Nørskov, J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, J. Electrochem. Soc. 152, J23J26 (2005).
http://dx.doi.org/10.1149/1.1856988
40.
40. A. B. Laursen, S. Kegnæs, S. Dahl, and I. Chorkendorff, Energy Environ. Sci. 5, 55775591 (2012).
http://dx.doi.org/10.1039/c2ee02618j
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4892976
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4892976
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4892976
2014-09-02
2016-09-29

Abstract

Based on earlier results on the photocatalytic properties of MoS, the 1T form of MoSe, prepared by lithium intercalation and exfoliation of bulk MoSe, has been employed for the visible-light induced generation of hydrogen. 1T-MoSe is found to be superior to both 2H and 1T MoS as well as 2H-MoSe in producing hydrogen from water, the yield being in the 60–75 mmol h−1 g−1 range with a turn over frequency of 15–19 h−1. First principles calculations reveal that 1T-MoSe has a lower work function than 2H-MoSe as well as 1T and 2H-MoS, making it easier to transfer an electron from 1T-MoSe for the production of H.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4892976.html;jsessionid=v6JDo_7Nd3zlY2MSv7T75T3E.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4892976&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4892976&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4892976'
Top,Right1,Right2,Right3,