Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Cross, “Materials science: Lead-free at last,” Nature (London) 432(7013), 2425 (2004).
2. Y. Lee, G. Lim, and W. Moon, “A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique,” Sens. Actuat. A 130–131, 105110 (2006).
3. S. Saadon and O. Sidek, “A review of vibration-based MEMS piezoelectric energy harvesters,” Energy Convers. Manag. 52(1), 500504 (2011).
4. Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of novel thin-film piezoelectric accelerometer,” Sens. Actuat. A 56(3), 239249 (1996).
5. C. Lee, T. Itoh, and T. Suga, “Micromachined piezoelectric force sensors based on PZT thin films,” IEEE Trans. Ultrason., Ferroelect. Freq. Control 43(4), 553559 (1996).
6. A. Moskalik, “Piezoelectric actuation: State of the art,” Shock Vibrat. Digest 33, 269 (2001).
7. R. M. White, “Silicon-based ultrasonic microsensors and micropumps,” Integrat. Ferroelect. 7(1–4), 353358 (1995).
8. P. Muralt, “PZT thin films for microsensors and actuators: Where do we stand?,” IEEE Ultrason., Ferroelect. Freq. Control 47(4), 903915 (2000).
9. C. Eom, R. Van Dover, J. M. Phillips, D. Werder, J. Marshall, C. Chen, R. Cava, R. Fleming, and D. Fork, “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes,” Appl. Phys. Lett. 63(18), 25702572 (1993).
10. P. Muralt, N. Ledermann, J. J. Baborowski, and S. Gentil, “Integration of piezoelectric Pb(ZrxTi1-x)O-3 (PZT) thin films into micromachined sensors and actuators,” Microsystems 9, 124 (2002).
11. T. Y. Kwon, K. Eom, J. H. Park, D. S. Yoon, T. S. Kim, and H. L. Lee, “In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid,” Appl. Phys. Lett. 90(22), 223903 (2007).
12. A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors: An alternative to optical biosensors?,” Angew. Chem. Int. Ed. 39, 40044032 (2000).<4004::AID-ANIE4004>3.0.CO;2-2
13. Y. Yang, C. Callegari, X. Feng, K. Ekinci, and M. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583586 (2006).
14.(a) J. Tamayo, P. M. Kosaka, J. J. Ruz, Á. San Paulo, and M. Calleja, “Biosensors based on nanomechanical systems,” Chem. Soc. Rev. 42(3), 12871311 (2013);
14.(b) A. W. McFarland, M. A. Poggi, L. A. Bottomley, and J. S. Colton, “Characterization of microcantilevers solely by frequency response acquisition,” J. Micromech. Microeng. 15(4), 785 (2005).
15. N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82(16), 26972699 (2003).
16. S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, and C. B. Eom, “Giant piezoelectricity on Si for hyperactive MEMS,” Science 334(6058), 958961 (2011).
17. M. D. Nguyen, H. Nazeer, K. Karakaya, S. Pham, R. Steenwelle, M. Dekkers, L. Abelmann, D. Blank, and G. Rijnders, “Characterization of epitaxial Pb (Zr, Ti) O3 thin films deposited by pulsed laser deposition on silicon cantilevers,” J. Micromech. Microeng. 20(8), 085022 (2010).
18. N. Banerjee, G. Koster, and G. Rijnders, “Submicron patterning of epitaxial PbZr0.52Ti 0.48O3 heterostructures,” Appl. Phys. Lett. 102(14), 142909 (2013).
19. S. Wang, C. Ong, L. You, and S. Xu, “Epitaxial growth of yittria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer,” Semicond. Sci. Technol. 15(8), 836 (2000).
20. P. M. Te. Riele, G. Rijnders, and D. H. A. Blank, “Ferroelectric devices created by pressure modulated stencil deposition,” Appl. Phys. Lett. 93(23), 233109 (2008).
21. M. Dekkers, M. D. Nguyen, R. Steenwelle, P. M. T. Riele, D. H. A. Blank, and G. Rijnders, “Ferroelectric properties of epitaxial Pb(Zr, Ti)O-3 thin films on silicon by control of crystal orientation,” Appl. Phys. Lett. 95, 012902 (2009).
22. M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d(31,eff) determined from cantilever structures,” J. Micromech. Microeng. 23, 025008 (2013).

Data & Media loading...


Article metrics loading...



We report on the fabrication and mechanical properties of all-oxide, free-standing, heteroepitaxial, piezoelectric, microelectromechanical systems (MEMS) on silicon, using PbZrTiO as the key functional material. The fabrication was enabled by the development of an epitaxial lift-off strategy for the patterning of multilayer oxide heterostructures grown on Si(001), employing a high temperature stable, sacrificial oxide template mask to obtain freestanding cantilever MEMS devices after substrate etching. All cantilevers, with lengths in the range 25–325 m, width 50 m, and total thickness of 300 nm, can be actuated by an external AC-bias. For lengths 50–125 m, the second order bending mode formed the dominant resonance, whereas for the other lengths different or multiple modes were present.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd