Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4893543
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
3.
3. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.096802
4.
4. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
http://dx.doi.org/10.1126/science.1137201
5.
5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
6.
6. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213 (2010).
http://dx.doi.org/10.1126/science.1184014
7.
7. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153401
8.
8. M. Z. S. Flores, P. A. S. Autreto, S. B. Legoas, and D. S. Galvao, Nanotechnology 20, 465704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/46/465704
9.
9. R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small 6, 2877 (2010).
http://dx.doi.org/10.1002/smll.201001555
10.
10. H. Sahin, M. Topsakal, and S. Ciraci, Phys. Rev. B 83, 115432 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115432
11.
11. H. Peelaers, A. D. Hernandez-Nieves, O. Leenaerts, B. Partoens, and F. M. Peeters, Appl. Phys. Lett. 98, 051914 (2011).
http://dx.doi.org/10.1063/1.3551712
12.
12. H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 24075 (2012).
http://dx.doi.org/10.1021/jp307006c
13.
13. A. Kara, H. Enriquez, A. P. Seitsonen, L. C. L. Y. Voon, S. Vizzini, B. Aufray, and H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012).
http://dx.doi.org/10.1016/j.surfrep.2011.10.001
14.
14. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155453
15.
15. L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.3719
16.
16. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
http://dx.doi.org/10.1038/nchem.1589
17.
17. Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, ACS Nano 6(2), 1695 (2012).
http://dx.doi.org/10.1021/nn204667z
18.
18. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, Nat. Commun. 5, 3252 (2014).
http://dx.doi.org/10.1038/ncomms4252
19.
19. B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, and E. Tutis, Nat. Mater. 7, 960 (2008).
http://dx.doi.org/10.1038/nmat2318
20.
20. R. A. Jishi and H. M. Alyahyaei, Phys. Rev. B 78, 144516 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144516
21.
21. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
22.
22. E. Cappelluti, R. Roldan, J. A. Silva-Guillen, P. Ordejon, and F. Guinea, Phys. Rev. B 88, 075409 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075409
23.
23. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Phys. Rev. B 87, 165409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165409
24.
24. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
25.
25. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
26.
26. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
27.
27. A. K. Geim, Intern. J. Mod. Phys. B 25, 4055 (2011).
http://dx.doi.org/10.1142/S0217979211059097
28.
28. A. K. Geim, and I. V. Grigorieva, Nature 499, 419 (2013).
http://dx.doi.org/10.1038/nature12385
29.
29. H. Terrones, F. López-Urías, and M. Terrones, Sci. Rep. 3, 1549 (2013).
http://dx.doi.org/10.1038/srep01549
30.
30. M. S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, Nat. Commun. 4, 1624 (2013).
http://dx.doi.org/10.1038/ncomms2652
31.
31. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
32.
32. C. Dean, A. F. Young, L. Wang, I. Meric, G. H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, and J. Hone, Solid State Commun. 152, 1275 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.021
33.
33. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, Nat. Nanotechnol. 8, 100 (2012).
http://dx.doi.org/10.1038/nnano.2012.224
34.
34. Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, and B. Huang, J. Phys. Chem. C 115(41), 20237 (2011).
http://dx.doi.org/10.1021/jp205799y
35.
35. X. Li, Y. Dai, Y. Ma, S. Han, and B. Huang, Phys. Chem. Chem. Phys. 16, 4230 (2014).
http://dx.doi.org/10.1039/c3cp54592j
36.
36. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90011-5
37.
37. W. Jaegermann, C. H. Pettenkofer, A. Schellenberger, C. A. Papageorgopoulos, M. Kamaratos, D. Vlachos, and Y. Tomm, Chem. Phys. Lett. 221, 441 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00286-X
38.
38. K. K. Tiong, Y. S. Huang, and C. H. Ho, J. Alloys Compd. 317, 208 (2001).
http://dx.doi.org/10.1016/S0925-8388(00)01327-X
39.
39. V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, Phys. Rev. B 78, 134104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134104
40.
40. C. N. R. Rao, H. S. S. R. Matte, R. Voggu, and A. Govindaraj, Dalton Trans. 41, 5089 (2012).
http://dx.doi.org/10.1039/c2dt12266a
41.
41. Y. Shi, J. K. Huang, L. Jin, Y. T. Hsu, S. F. Yu, L. J. Li, and H. Y. Yang, Sci. Rep. 3, 1839 (2013).
http://dx.doi.org/10.1038/srep01839
42.
42. J. Kim, S. Byun, A. J. Smith, J. Yu, and J. Huang, J. Phys. Chem. Lett. 4, 1227 (2013).
http://dx.doi.org/10.1021/jz400507t
43.
43. H. D. Ozaydin, H. Sahin, R. T. Senger, and F. M. Peeters, “Formation and diffusion characteristics of Pt clusters on graphene, 1H-MoS2 and 1T-TaS2,” Ann. Phys. (published online).
http://dx.doi.org/10.1002/andp.201400079
44.
44. H. S. S. Matte, U. Maitra, P. Kumar, B. G. Rao, K. Pramoda, and C. N. R. Rao, Z. Anorg. Allg. Chem. 638, 2617 (2012).
http://dx.doi.org/10.1002/zaac.201200283
45.
45. F. Huang, and J. J. Baumberg, Nano Lett. 10, 1787 (2010).
http://dx.doi.org/10.1021/nl1004114
46.
46. H. Qian, Y. Zhu, and R. Jin, Proc. Natl. Acad. Sci. U. S. A. 109, 696 (2012).
http://dx.doi.org/10.1073/pnas.1115307109
47.
47. S. He, K. K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L. J. Li, S. Song, and C. Fan, Anal. Chem. 84, 4622 (2012).
http://dx.doi.org/10.1021/ac300577d
48.
48. Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, J. Am. Chem. Soc. 132, 12170 (2010).
http://dx.doi.org/10.1021/ja1036572
49.
49. A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, and R. V. Gorbachev, Nano Lett. 14(6), 3270 (2014).
http://dx.doi.org/10.1021/nl5006542
50.
50. S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, Nat. Mater. 11, 764 (2012).
http://dx.doi.org/10.1038/nmat3386
51.
51. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science 340, 1311 (2013).
http://dx.doi.org/10.1126/science.1235547
52.
52. B. Sachs, L. Britnell, T. O. Wehling, A. Eckmann, R. Jalil, B. D. Belle, A. I. Lichtenstein, M. I. Katsnelson, and K. S. Novoselov, Appl. Phys. Lett. 103, 251607 (2013).
http://dx.doi.org/10.1063/1.4852615
53.
53. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
54.
54. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
55.
55. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
56.
56. M. Amft, S. Lebegue, O. Eriksson, and N. V. Skorodumova, J. Phys. 23, 395001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/39/395001
57.
57. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
58.
58. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Mater. 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
59.
59. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).
http://dx.doi.org/10.1002/jcc.20575
60.
60. K. Nakada and A. Ishii, “DFT Calculation for Adatom Adsorption on Graphene,” in Nanotechnology and Nanomaterials "Graphene Simulation, edited by Jian Ru Gong (InTech, 2011), p. 978. See http://www.intechopen.com/books/graphene-simulation/dft-calculation-for-adatom-adsorption-on-graphene.
http://dx.doi.org/10.5772/20477
61.
61. C. K. Yee, A. Ulman, J. D. Ruiz, A. Parikh, H. White, and M. Rafailovich, Langmuir 19, 9450 (1992).
http://dx.doi.org/10.1021/la020628i
62.
62. K. S. Subrahmanyam, A. K. Manna, and S. K. Pati, Chem. Phys. Lett. 497, 70 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.091
63.
63. B. G. Rao, H. S. S. R. Matte, and C. N. R. Rao, J. Cluster Sci. 23(3), 929 (2012).
http://dx.doi.org/10.1007/s10876-012-0504-9
64.
64. H. P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085318
65.
65. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, and Y. J. Chabal, ACS Nano 7, 11350 (2013).
http://dx.doi.org/10.1021/nn4052138
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4893543
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4893543
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4893543
2014-08-27
2016-09-26

Abstract

The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4893543.html;jsessionid=WyhQfJ0_2XpNYMuLpZ9oayXM.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4893543&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4893543&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4893543'
Top,Right1,Right2,Right3,