Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4893962
1.
1. A. K. Geim and I. V. Grigorieva, Nature (London) 499(7459), 419 (2013).
http://dx.doi.org/10.1038/nature12385
2.
2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7(11), 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
3.
3. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, ACS Nano 7(9), 7931 (2013).
http://dx.doi.org/10.1021/nn402954e
4.
4. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8(7), 497 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
5.
5. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science 340(6138), 1311 (2013).
http://dx.doi.org/10.1126/science.1235547
6.
6. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10(5), 343 (2014).
http://dx.doi.org/10.1038/nphys2942
7.
7. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater. 12(9), 850 (2013).
http://dx.doi.org/10.1038/nmat3700
8.
8. E. Scalise, M. Houssa, G. Pourtois, V. Afanas'ev, and A. Stesmans, Nano Res. 5(1), 43 (2012).
http://dx.doi.org/10.1007/s12274-011-0183-0
9.
9. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
10.
10. P. Joensen, R. F. Frindt, and S. Roy Morrison, Mater. Res. Bull. 21(4), 457 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90011-5
11.
11. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331(6017), 568 (2011).
http://dx.doi.org/10.1126/science.1194975
12.
12. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8(7), 966 (2012).
http://dx.doi.org/10.1002/smll.201102654
13.
13. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12(6), 554 (2013).
http://dx.doi.org/10.1038/nmat3633
14.
14. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12(8), 754 (2013).
http://dx.doi.org/10.1038/nmat3673
15.
15. J.-Kai Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, ACS Nano 8(1), 923 (2014).
http://dx.doi.org/10.1021/nn405719x
16.
16. S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, ACS Nano 7(3), 2768 (2013).
http://dx.doi.org/10.1021/nn4002038
17.
17. A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. van der Zant, and G. A. Steele, Nano Lett. 12(6), 3187 (2012).
http://dx.doi.org/10.1021/nl301164v
18.
18. Y. Huang, J. Wu, X. Xu, Y. Ho, G. Ni, Q. Zou, G. K. W. Koon, W. Zhao, A. H. Castro Neto, G. Eda, C. Shen, and B. Özyilmaz, Nano Res. 6(3), 200 (2013).
http://dx.doi.org/10.1007/s12274-013-0296-8
19.
19. Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang, and Z. Ni, ACS Nano 7(5), 4202 (2013).
http://dx.doi.org/10.1021/nn400644t
20.
20. H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. B 88(3), 035301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035301
21.
21. B. C. Windom, W. G. Sawyer, and D. W. Hahn, Tribol. Lett. 42(3), 301 (2011).
http://dx.doi.org/10.1007/s11249-011-9774-x
22.
22. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105(13), 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
23.
23. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12(3), 207 (2013).
http://dx.doi.org/10.1038/nmat3505
24.
24. S. Mouri, Y. Miyauchi, and K. Matsuda, Nano Lett. 13(12), 5944 (2013).
http://dx.doi.org/10.1021/nl403036h
25.
25. A. K. M. Newaz, D. Prasai, J. I. Ziegler, D. Caudel, S. Robinson, R. F. Haglund, Jr., and K. I. Bolotin, Solid State Commun. 155, 49 (2013).
http://dx.doi.org/10.1016/j.ssc.2012.11.010
26.
26. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
27.
27. C.-P. Lu, G. Li, J. Mao, L.-M. Wang, and E. Y. Andrei, Nano Lett. 14(8), 46284633 (2014).
http://dx.doi.org/10.1021/nl501659n
28.
28. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Nano Lett. 13(9), 4212 (2013).
http://dx.doi.org/10.1021/nl401916s
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4893962 for Figs. S1–S3. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4893962
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4893962
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4893962
2014-08-28
2016-09-25

Abstract

We report on the preparation of mono- and bi-layer molybdenum disulfide (MoS) from a bulk crystal by facile wet chemical etching. We show that concentrated nitric acid (HNO) effectively etches thin MoS crystals from their edges via formation of MoO. Interestingly, etching of thin crystals on a substrate leaves behind unreacted mono- and bilayer sheets. The flakes obtained by chemical etching exhibit electronic quality comparable to that of mechanically exfoliated counterparts. Our findings indicate that the self-limiting chemical etching is a promising top-down route to preparing atomically thin crystals from bulk layer compounds.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4893962.html;jsessionid=6oI0brPpTHOe2gZBWZN58oI0.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4893962&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4893962&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4893962'
Top,Right1,Right2,Right3,