Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894195
1.
1. R. G. Gordon, MRS Bull. 25, 52 (2000).
http://dx.doi.org/10.1557/mrs2000.151
2.
2. M. McCluskey and S. Jokela, Physica B 401–402, 355 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.186
3.
3. T. Ben-Yaacov, T. Ive, C. G. Van de Walle, U. K. Mishra, J. S. Speck, and S. P. Denbaars, Phys. Stat. Sol. (c) 6, 1464 (2009).
http://dx.doi.org/10.1002/pssc.200881529
4.
4. D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and L. J. Brillson, Phys. Rev. B 84, 115202 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115202
5.
5. C. S. Nichols, C. G. Van de Walle, and S. T. Pantelides, Phys. Rev. Lett. 62, 1049 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1049
6.
6. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
7.
7. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
8.
8. T. Nakagawa, I. Sakaguchi, M. Uematsu, Y. Sato, N. Ohashi, H. Haneda, and Y. Ikuhara, Jpn. J. Appl. Phys. 46, 4099 (2007).
http://dx.doi.org/10.1143/JJAP.46.4099
9.
9. T. Nakagawa, K. Matsumoto, I. Sakaguchi, M. Uematsu, H. Haneda, and N. Ohashi, Jpn. J. Appl. Phys. 47, 7848 (2008).
http://dx.doi.org/10.1143/JJAP.47.7848
10.
10. L. J. Brillson, Z. Zhang, D. R. Doutt, D. C. Look, B. G. Svensson, A. Y. Kuznetsov, and F. Tuomisto, Phys. Stat. Sol. (b) 250, 2110 (2013).
http://dx.doi.org/10.1002/pssb.201200943
11.
11. D. R. Doutt, S. Balaz, L. Isabella, D. C. Look, K. D. Leedy, and L. J. Brillson, Phys. Stat. Sol. (b) 250, 2114 (2013).
http://dx.doi.org/10.1002/pssb.201200945
12.
12. J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. N. Duenow, T. J. Coutts, S. B. Zhang, D. C. Look, and S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.055502
13.
13. G.-Y. Huang, C.-Y. Wang, and J.-T. Wang, J. Appl. Phys. 105, 073504 (2009).
http://dx.doi.org/10.1063/1.3103307
14.
14. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
15.
15. C. G. Van de Walle and A. Janotti, Phys. Stat. Sol. (b) 248, 19 (2011).
http://dx.doi.org/10.1002/pssb.201046290
16.
16. B. Puchala and D. Morgan, Phys. Rev. B 85, 064106 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064106
17.
17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
18.
18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
19.
19. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
20.
20. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
21.
21.For all atomic PAW sets, the outermost s- and p-electrons are treated as valence. For Zn, the 3d-electrons are in the valence as well.
22.
22. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
23.
23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
24.
24. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
25.
25. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
26.
26. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 80, 205113 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205113
27.
27. Semiconductors: Data Handbook, 3rd ed., edited by O. Madelung (Springer, Berlin, 2003).
28.
28. H. Schulz and K. Thiemann, Solid State Commun. 32, 783 (1979).
http://dx.doi.org/10.1016/0038-1098(79)90754-3
29.
29.The plane-wave cutoff energy is 300 eV. For electronic self-consistency, the energy is converged to 0.1 meV. Structures are optimized until forces are smaller than 20 meV/Å.
30.
30. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.253
31.
31. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.016402
32.
32. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Stat. Sol. (b) 248, 1067 (2011).
http://dx.doi.org/10.1002/pssb.201046289
33.
33.Standard thermodynamic properties of chemical substances,” CRC Handbook of Chemistry and Physics, 92nd ed., edited by W. M. Haynes (CRC Press/Taylor and Francis, Boca Raton, FL, 2012).
34.
34. J. Neugebauer and C. G. Van de Walle, J. Appl. Phys. 85, 3003 (1999).
http://dx.doi.org/10.1063/1.369619
35.
35. T. S. Bjørheim, S. Erdal, K. M. Johansen, K. E. Knutsen, and T. Norby, J. Phys. Chem. C 116, 23764 (2012).
http://dx.doi.org/10.1021/jp307835c
36.
36. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
37.
37. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
38.
38. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
39.
39. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80396-4
40.
40. R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials (Wiley, 2005).
41.
41. V. J. Norman, Australian J. Chem. 22, 325 (1969).
http://dx.doi.org/10.1071/CH9690325
42.
42. D. Thomas, J. Phys. Chem. Sol. 9, 31 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90087-3
43.
43. K. Momma and F. Izumi, J. Appl. Crystallography 44, 1272 (2011).
http://dx.doi.org/10.1107/S0021889811038970
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894195
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894195
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894195
2014-09-02
2016-10-01

Abstract

Group-III elements act as donors in ZnO when incorporated on the Zn site. Their incorporation and behavior upon annealing is governed by diffusion, which proceeds mainly through a vacancy-assisted process. We report first-principles calculations for the migration of Al, Ga, and In donors in ZnO, based on density functional theory using a hybrid functional. From the calculated migration barriers and formation energies, we determine diffusion activation energies and estimate annealing temperatures. Impurity-vacancy binding energies and migration barriers decrease from Al to In. Activation energies for vacancy-assisted diffusion are lowest for In and highest for Al.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894195.html;jsessionid=6aKOqdssUnn8A4YPp8SPPjfp.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894195&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894195&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894195'
Top,Right1,Right2,Right3,