Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894373
1.
1. C. J. Brinker, L. Yunfeng, A. Sellinger, and F. Hongyou, Adv. Mater. 11, 579 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
2.
2. S. I. Stupp, M. U. Pralle, G. N. Tew, L. M. Li, M. Sayar, and E. R. Zubarev, MRS Bull. 25, 42 (2000).
http://dx.doi.org/10.1557/mrs2000.28
3.
3. M. Fujita, J. Yazaki, and K. Ogura, J. Am. Chem. Soc. 112, 5645 (1990).
http://dx.doi.org/10.1021/ja00170a042
4.
4. J. B. Goodenough and J.-S. Zhou, Nature (London) 386, 229 (1997).
http://dx.doi.org/10.1038/386229a0
5.
5. M. Boncheva and G. M. Whitesides, MRS Bull. 30, 736 (2005).
http://dx.doi.org/10.1557/mrs2005.208
6.
6. R. Schwesinger, Chimia 39, 269 (1985).
7.
7. R. Schwesinger and H. Schlemper, Angrew. Chem. Int. Ed. Engl. 26, 1167 (1987).
http://dx.doi.org/10.1002/anie.198711671
8.
8. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).
http://dx.doi.org/10.1021/ic50069a016
9.
9. B. Bogdanović and M. Schwickardi, J. Alloys Compd. 253–254, 1 (1997).
http://dx.doi.org/10.1016/S0925-8388(96)03049-6
10.
10. A. C. Diilon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London) 386, 377 (1997).
http://dx.doi.org/10.1038/386377a0
11.
11. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science 300, 1127 (2003).
http://dx.doi.org/10.1126/science.1083440
12.
12. H. Kiriyama, Bull. Chem. Soc. Jpn. 35, 1199 (1962).
http://dx.doi.org/10.1246/bcsj.35.1199
13.
13. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic Press, San Diego, 2002).
14.
14. H. Sun, J. Phys. Chem. B 102, 7338 (1998).
http://dx.doi.org/10.1021/jp980939v
15.
15. H. Kiriyama, H. Ibamoto, and K. Matsuo, Acta. Cryst. 7, 482 (1954).
http://dx.doi.org/10.1107/S0365110X54001521
16.
16. J. Itoh and Y. Kamiya, J. Phys. Soc. Jpn. 17B, 512 (1962).
17.
17. T. Haseda, H. Kobayashi, E. Kanda, and A. Miedema, J. Phys. Soc. Jpn. 17B, 518 (1962).
18.
18. K. Okada, Phys. Rev. Lett. 15, 252 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.252
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4894373 for the results of X-ray diffraction, hp-DSC, blank, and hydrogen adsorption/desorption cycling measurements. [Supplementary Material]
20.
20. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
http://dx.doi.org/10.1143/ptp/5.4.544
21.
21. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
http://dx.doi.org/10.1063/1.1704046
22.
22. M. B. Green, Superstring Theory (Cambridge University Press, UK, 1987), Vol. 1 and 2.
23.
23. H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, and O. M. Yaghi, Nature (London) 427, 523 (2004).
http://dx.doi.org/10.1038/nature02311
24.
24. K. Sumida, M. R. Hill, S. Horike, A. Dailly, and J. R. Long, J. Am. Chem. Soc. 131, 15120 (2009).
http://dx.doi.org/10.1021/ja9072707
25.
25. D. Yuan, D. Zhao, D. Sun, and H. C. Zhou, Angrew. Chem. Int. Ed. 49, 5357 (2010).
http://dx.doi.org/10.1002/anie.201001009
26.
26. S. S. Han, J. K. Kang, H. M. Lee, A. C. T. Duin, and W. A. Goddard III, J. Chem. Phys. 123, 114704 (2005).
http://dx.doi.org/10.1063/1.1999629
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894373
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894373
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894373
2014-09-04
2016-09-25

Abstract

Metal–organic frameworks (MOFs) have attracted widespread attention owing to their unusual structure and properties produced by their nanospaces. However, many MOFs possess the similar three-dimensional frameworks, limiting their structural variety and operating capacity for hydrogen storage under ambient conditions. Here we report the synthesis and structural characterization of a single-crystal one-dimensional dimer whose structure, operating capacity, and physical mechanism contrast with those of existing MOFs. The hydrogen storage capacity of 2.6 wt.% is comparable to the highest capacity achieved by existing MOFs at room temperature. This exceptional storage capacity is realized by self-organization during crystal growth using a weak base.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894373.html;jsessionid=cm42WZqSeqCNgTKOQz22d7fE.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894373&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894373&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894373'
Top,Right1,Right2,Right3,