Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894435
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
3.
3. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
4.
4. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342, 614 (2013).
http://dx.doi.org/10.1126/science.1244358
5.
5. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
http://dx.doi.org/10.1038/nature12385
6.
6. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
7.
7. C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Nature 497, 598 (2013).
http://dx.doi.org/10.1038/nature12186
8.
8. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science 340, 1311 (2013).
http://dx.doi.org/10.1126/science.1235547
9.
9. M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, Nat. Commun. 4, 1624 (2013).
http://dx.doi.org/10.1038/ncomms2652
10.
10. C.-H. Lee, T. Schiros, E. J. G. Santos, B. Kim, K. G. Yager, S. J. Kang, S. Lee, J. Yu, K. Watanabe, T. Taniguchi, J. Hone, E. Kaxiras, C. Nuckolls, and P. Kim, Adv. Mater. 26, 2812 (2014).
http://dx.doi.org/10.1002/adma.201304973
11.
11. C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. (published online).
http://dx.doi.org/10.1038/nnano.2014.150
12.
12. S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, Nat. Mater. 11, 764 (2012).
http://dx.doi.org/10.1038/nmat3386
13.
13. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, Y. J. Yoo, K. Watanabe, T. Takahashi, C. Nuckolls, P. Kim, and J. Hone, ACS Nano 7, 7931 (2013).
http://dx.doi.org/10.1021/nn402954e
14.
14. S. J. Kang, G.-H. Lee, Y.-J. Yu, Y. Zhao, B. Kim, K. Watanabe, T. Taniguchi, J. Hone, P. Kim, and C. Nuckolls, Adv. Funct. Mater. 24, 5157 (2014).
http://dx.doi.org/10.1002/adfm.201400348
15.
15. D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
http://dx.doi.org/10.1021/nn301572c
16.
16. S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. B. Li, J. C. Grossman, and J. Q. Wu, Nano Lett. 13, 2831 (2013).
http://dx.doi.org/10.1021/nl4011172
17.
17. A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, ACS Nano 5, 7812 (2011).
http://dx.doi.org/10.1021/nn201809k
18.
18. P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, ACS Nano 5, 6826 (2011).
http://dx.doi.org/10.1021/nn2021875
19.
19. G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Appl. Phys. Lett. 99, 243114 (2011).
http://dx.doi.org/10.1063/1.3662043
20.
20. S. Bertolazzi, D. Krasnozhon, and A. Kis, ACS Nano 7, 3246 (2013).
http://dx.doi.org/10.1021/nn3059136
21.
21. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
22.
22. M. Bernardi, M. Palummo, and J. C. Grossman, Nano Lett. 13, 3664 (2013).
http://dx.doi.org/10.1021/nl401544y
23.
23. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Nat. Nanotechnol. 8, 952 (2013).
http://dx.doi.org/10.1038/nnano.2013.219
24.
24. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdröfer, and T. Mueller, Nano Lett. 14, 4785 (2014).
http://dx.doi.org/10.1021/nl501962c
25.
25. Y. Z. Chen, B. Lee, D. N. Fu, and V. Podzorov, Adv. Mater. 23, 5370 (2011).
http://dx.doi.org/10.1002/adma.201102294
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894435
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894435
2014-09-02
2016-12-04

Abstract

The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS heterostructures for memory devices; graphene/MoS/WSe/graphene vertical junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894435.html;jsessionid=t0eHrbmKvJNg7ITneYvNQVrw.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894435&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894435'
Top,Right1,Right2,Right3,