Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894758
1.
1. J. Wang, A. Scholl, H. Zheng, S. B. Ogale, D. Viehland, D. G. Schlom, N. A. Spaldin, K. M. Rabe, M. Wuttig, L/ Mohaddes, J. Neaton, U. Waghmare, T. Zhao, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
2.
2. H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom, Phys. Rev. Lett. 101, 107602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107602
3.
3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
4.
4. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
5.
5. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. 5, 823829 (2006).
http://dx.doi.org/10.1038/nmat1731
6.
6. C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, Phys. Rev. B 75, 054408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.054408
7.
7. M. Pan, S. Hong, J. R. Guest, Y. Liu, and A. Petford-Long, J. Phys. Appl. Phys. 46, 055001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/5/055001
8.
8. W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nat. Mater. 6, 348 (2007).
http://dx.doi.org/10.1038/nmat1886
9.
9. P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
10.
10. Y. Liu, Y. Yao, S. Dong, S. Yang, and X. Li, Phys. Rev. B 86, 075113 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075113
11.
11. E. J. Guo, A. Herklotz, R. Roth, M. Christl, S. Das, W. Widdra, and K. Dörr, Appl. Phys. Lett. 103, 022905 (2013).
http://dx.doi.org/10.1063/1.4813419
12.
12. A. Herklotz, E. J. Guo, M. D. Biegalski, H. M. Christen, L. Schultz, and K. Dörr, New J. Phys. 15, 073021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/7/073021
13.
13. E. J. Guo, K. Dörr, and A. Herklotz, Appl. Phys. Lett. 101, 242908 (2012).
http://dx.doi.org/10.1063/1.4772006
14.
14. P. Schiffer, A. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3336
15.
15. Y. Tokura, H. Kuwahara, Y. Moritomo, Y. Tomioka, and A. Asamitsu, Phys. Rev. Lett. 76, 3184 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3184
16.
16. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
http://dx.doi.org/10.1126/science.283.5410.2034
17.
17. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Math. 3, 355 (1937).
18.
18. M. Avrami, J. Chem. Phys. 8, 212 (1940).
http://dx.doi.org/10.1063/1.1750631
19.
19. J. Y. Jo, S. M. Yang, T. H. Kim, H. N. Lee, J.-G. Yoon, S. Park, Y. Jo, M. H. Jung, and T. W. Noh, Phys. Rev. Lett. 102, 045701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045701
20.
20. S. C. Gausepohl, M. Lee, K. Char, R. A. Rao, and C. B. Eom, Phys. Rev. B 52, 3459 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.3459
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894758
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894758
2014-09-05
2016-12-11

Abstract

The effect of a magnetic field on the ferroelectric switching kinetics of BiFeO (BFO) capacitors with LaCaMnO (LCMO) bottom electrode and Pt top contact has been investigated. We find a strong dependence of the remnant polarization and coercive field on the magnetic field. The switching time can be systematically tuned by magnetic field and reaches a tenfold reduction around the Curie temperature of LCMO at 4 T. We attribute this behavior to the splitting of the voltage drops across the BFO film and the LCMO bottom electrode, which can be strongly influenced by an external magnetic field due to the magnetoresistance. Further experiments on the BFO capacitors with SrRuO bottom electrodes show little magnetic field dependence of ferroelectric switching confirming our interpretation. Our results provide an efficient route to control the ferroelectric switching speed through the magnetic field, implying potential application in multifunctional devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894758.html;jsessionid=vUgfalX1jhzGVQ3iJLuLvzCN.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894758&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894758&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894758'
Top,Right1,Right2,Right3,