Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894779
1.
1. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
2.
2. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
3.
3. L. Fu, C. Kane, and E. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
4.
4. P. G. De Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).
5.
5. L. Fu, and C. Kane, Phys. Rev. Lett. 100, 096407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096407
6.
6. X.-L. Qi, T. Hughes, S. Raghu, and S.-C. Zhang, Phys. Rev. Lett. 102, 187001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.187001
7.
7. F. Wilczek, Nat. Phys. 5, 614 (2009).
http://dx.doi.org/10.1038/nphys1380
8.
8. C. Nayak, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1083
9.
9. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.057001
10.
10. Y. S. Hor, J. G. Checkelsky, D. Qu, N. P. Ong, and R. J. Cava, J. Phys. Chem. Solids 72, 572 (2011).
http://dx.doi.org/10.1016/j.jpcs.2010.10.027
11.
11. J. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao, and C. Q. Jin, Sci. Rep. 3, 2016 (2013).
http://dx.doi.org/10.1038/srep02016
12.
12. C. Zhang, L. Sun, Z. Chen, X. Zhou, Q. Wu, W. Yi, J. Guo, X. Dong, and Z. Zhao, Phys. Rev. B 83, 140504R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140504
13.
13. J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. U.S.A. 108, 24 (2011).
http://dx.doi.org/10.1073/pnas.1014085108
14.
14. S. J. Zhang, J. L. Zhang, X. H. Yu, J. Zhu, P. P. Kong, S. M. Feng, Q. Q. Liu, L. X. Yang, X. C. Wang, L. Z. Cao, W. G. Yang, L. Wang, H. K. Mao, Y. S. Zhao, H. Z. Liu, X. Dai, Z. Fang, S. C. Zhang, and C. Q. Jin, J. Appl. Phys. 111, 112630 (2012).
http://dx.doi.org/10.1063/1.4726258
15.
15. L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Phys. Rev. Lett. 106, 145501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.145501
16.
16. M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, J. Phys.: Conf. Ser. 215, 012036 (2010).
http://dx.doi.org/10.1088/1742-6596/215/1/012036
17.
17. J. R. Jeffries, A. L. Lima Sharma, P. A. Sharma, C. D. Spataru, S. K. McCall, J. D. Sugar, S. T. Weir, and Y. K. Vohra, Phys. Rev. B 84, 092505 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.092505
18.
18. P. Zareapour, A. Hayat, S. Y. F. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, S. Cheong, Z. Xu, G. D. Gu, S. Jia, R. J. Cava, and K. S. Burch, Nat. Commun. 3, 1056 (2012).
http://dx.doi.org/10.1038/ncomms2042
19.
19. T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 81, 241310 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.241310
20.
20. F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji, G. Liu, J. Fan, C. Yang, T. Xiang, and L. Lu, Phys. Rev. B 85, 104508 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.104508
21.
21. F. Yang, F. Qu, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, C. Yang, L. Fu, and L. Lu, Phys. Rev. B 86, 134504 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134504
22.
22. F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu, Sci. Rep. 2, 339 (2012).
http://dx.doi.org/10.1038/srep00339
23.
23. J. A. Hagmann, X. Liu, M. Dobrowolska, and J. K. Furdyna, J. Appl. Phys. 113, 17C724 (2013).
http://dx.doi.org/10.1063/1.4798482
24.
24. G. Koren, T. Kirzhner, E. Lahoud, K. Chashka, and A. Kanigel, Phys. Rev. B 84, 224521 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224521
25.
25. J. E. Brom, Y. Ke, R. Du, D. Won, X. Weng, K. Andre, J. C. Gagnon, S. E. Mohney, Q. Li, K. Chen, X. X. Xi, and J. M. Redwing, Appl. Phys. Lett. 100, 162110 (2012).
http://dx.doi.org/10.1063/1.4704680
26.
26. K. H. Wu, H.-J. Chen, Y. T. Chen, C. C. Hsieh, C. W. Luo, T. M. Uen, J. Y. Juang, J.-Y. Lin, T. Kobayashi, and M. Gospodinov, Eurphys. Lett. 94, 27006 (2011).
http://dx.doi.org/10.1209/0295-5075/94/27006
27.
27. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
http://dx.doi.org/10.1016/0001-6160(53)90006-6
28.
28. Y. Hor, A. Richardella, P. Roushan, Y. Xia, J. Checkelsky, A. Yazdani, M. Hasan, N. Ong, and R. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
29.
29. Y. Onose, R. Yoshimi, A. Tsukazaki, H. Yuan, T. Hidaka, Y. Iwasa, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 4, 083001 (2011).
http://dx.doi.org/10.1143/APEX.4.083001
30.
30. H. Noro, K. Sato, and H. Kagechika, J. Appl. Phys. 73, 1252 (1993).
http://dx.doi.org/10.1063/1.353266
31.
31. D. L. Smith, Thin-Film Deposition: Principles and Practice (McGraw-Hill, New York, 1995).
32.
32. Anawati, H. Nordmark, S. Diplas, J. C. Walmsley, and K. Nisancioglu, J. Electrochem. Soc. 159, C137 (2012).
http://dx.doi.org/10.1149/2.100203jes
33.
33. V. A. Safonov, M. A. Choba, and M. I. Buleev, Russ. J. Electrochem. 48, 163 (2012).
http://dx.doi.org/10.1134/S1023193512020152
34.
34. M. Tian, N. Kumar, M. H. W. Chan, and T. E. Mallouk, Phys. Rev. B 78, 045417 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045417
35.
35. L. A. Baring, R. R. da Silva, and Y. Kopelevich, Low Temp. Phys. 37, 889 (2011).
http://dx.doi.org/10.1063/1.3671591
36.
36. B. Weitzel and H. Micklitz, Phys. Rev. Lett. 66, 385388 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.385
37.
37. J. S. Moodera and R. Meservey, Phys. Rev. B 42, 179183 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.179
38.
38. K. Yamada, H. Fujiki, B. Shinozaki, and T. Kawaguti, Physica C 355, 147155 (2001).
http://dx.doi.org/10.1016/S0921-4534(00)01768-8
39.
39. S. Eley, S. Gopalakrishnan, P. M. Goldbart, and N. Mason, Nat. Phys. 8, 5962 (2012).
http://dx.doi.org/10.1038/nphys2154
40.
40. A. Hashibon and C. Elsässer, Phys. Rev. B 84, 144117 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144117
41.
41. S. X. Zhang, L. Yan, J. Qi, M. Zhuo, Y.-Q. Wang, R. P. Prasankumar, Q. X. Jia, and S. T. Picraux, Thin Solid Films 520, 6459 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.07.012
42.
42. H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12, 103038 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103038
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894779
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894779
2014-09-04
2016-12-10

Abstract

We report superconductivity at an onset critical temperature below 3.1 K in topological insulator ∼200-nm-thick BiTe thin films grown by pulsed laser deposition. Using energy-dispersive X-ray spectroscopy elemental mapping and Auger electron spectroscopy elemental depth profiling, we clearly identified bismuth (Bi) precipitation and Bi cluster signatures. Superconductivity in the BiTe films was attributed to the proximity effect of Bi clusters precipitated on the surface of the BiTe films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894779.html;jsessionid=sQ6h--AR56zUscWeLuvV68QV.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894779&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894779'
Top,Right1,Right2,Right3,