Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4894782
1.
1. Y. Liu, J. Goebl, and Y. Yin, Chem. Soc. Rev. 42, 2473 (2013).
http://dx.doi.org/10.1039/c3cs90021e
2.
2. E. V. Skorb and D. V. Andreeva, Polym. Chem. 4, 4834 (2013).
http://dx.doi.org/10.1039/c3py00088e
3.
3. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, and J. P. Hill, Chem. Lett. 43, 36 (2014).
http://dx.doi.org/10.1246/cl.130987
4.
4. J. Lu, J. W. Elam, and P. C. Stair, Acc. Chem. Res. 46, 1806 (2013).
http://dx.doi.org/10.1021/ar300229c
5.
5. J. Hamalainen, M. Ritala, and M. Leskela, Chem. Mater. 26, 786 (2014).
http://dx.doi.org/10.1021/cm402221y
6.
6. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
7.
7. N. Suzuki, T. Kimurab, and Y. Yamauchi, J. Mater. Chem. 20, 5294 (2010).
http://dx.doi.org/10.1039/c0jm00277a
8.
8. Y. Yamauchi, N. Suzukia, and T. Kimurac, Chem. Commun. 38, 5689 (2009).
http://dx.doi.org/10.1039/b909251j
9.
9. Z. Zhou, J. J. Zhao, Y. S. Chen, P. V. Schleyer, and Z. F. Chen, Nanotechnology 18, 424023 (2007).
http://dx.doi.org/10.1088/0957-4484/18/42/424023
10.
10. A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, and Z. Bagheri, Sensor. Actuat. B 161, 1025 (2012).
http://dx.doi.org/10.1016/j.snb.2011.12.001
11.
11. V. N. Tondare, C. Balasubramanian, S. V. Shende, D. S. Joag, V. P. Godbole, S. V. Bhoraskar, and M. Bhadbhade, Appl. Phys. Lett. 80, 4813 (2002).
http://dx.doi.org/10.1063/1.1482137
12.
12. Q. Wu, Z. Hu, X. Z. Wang, Y. N. Lu, X. Chen, H. Xu, and Y. Chen, J. Am. Chem. Soc. 125, 10176 (2003).
http://dx.doi.org/10.1021/ja0359963
13.
13. L. W. Yin, Y. Bando, Y. C. Zhu, D. Golberg, and M. S. Li, Adv. Mater. 16, 929 (2004).
http://dx.doi.org/10.1002/adma.200306571
14.
14. C. Ozgit-Akgun, F. Kayaci, I. Donmez, T. Uyar, and N. Biyikli, J. Am. Ceram. Soc. 96, 916 (2013).
http://dx.doi.org/10.1111/jace.12030
15.
15. R. T. Paine and C. K. Narula, Chem. Rev. 90, 73 (1990).
http://dx.doi.org/10.1021/cr00099a004
16.
16. B. G. Demczyk, J. Cumings, A. Zettl, and R. O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).
http://dx.doi.org/10.1063/1.1367906
17.
17. D. Golberg and Y. Bando, Appl. Phys. Lett. 79, 415 (2001).
http://dx.doi.org/10.1063/1.1385188
18.
18. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).
http://dx.doi.org/10.1209/0295-5075/28/5/007
19.
19. J. J. Pouch and S. A. Alterovitz, Synthesis and Properties of Boron Nitride (Trans Tech Publications, Zürich, 1990).
20.
20. Y. H. Gao, Y. Bando, K. Kurashima, and T. Sato, Scripta. Mater. 44, 1941 (2001).
http://dx.doi.org/10.1016/S1359-6462(01)00817-X
21.
21. C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, and D. Golberg, Angew. Chem. Int. Edit. 44, 7929 (2005).
http://dx.doi.org/10.1002/anie.200502591
22.
22. R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, and D. Wu, J. Am. Chem. Soc. 124, 7672 (2002).
http://dx.doi.org/10.1021/ja026030e
23.
23. X. Hou, Z. Yu, Y. Li, and K. Chou, Mater. Res. Bull. 49, 39 (2014).
http://dx.doi.org/10.1016/j.materresbull.2013.08.041
24.
24. D. Golberg, Y. Bando, P. Dorozhkin, and Z. C. Dong, MRS Bull. 29, 38 (2004).
http://dx.doi.org/10.1557/mrs2004.15
25.
25. D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Adv. Mat. 19, 2413 (2007).
http://dx.doi.org/10.1002/adma.200700179
26.
26. S. M. Nadeem and L. Tong, J. Nanosci. Nanotechnol. 14, 1389 (2014).
http://dx.doi.org/10.1166/jnn.2014.9197
27.
27. J. Kim, D. Shi, K. Kong, Y. Heo, J. H. Kim, M. R. Jo, Y. C. Lee, Y. M. Kang, and S. X. Dou, ACS Appl. Mater. Interfaces 5, 691 (2013).
http://dx.doi.org/10.1021/am302197y
28.
28. G. Jeong, J. Kim, M. Park, M. Seo, S. M. Hwang, Y. Kim, Y. Kim, J. H. Kim, and S. X. Dou, ACS Nano 8, 2977 (2014).
http://dx.doi.org/10.1021/nn500278q
29.
29. I. Donmez, F. Kayaci, C. Ozgit-Akgun, T. Uyar, and N. Biyikli, J. Alloy Compd. 559, 146 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.064
30.
30. X. Fang, S. Li, X. Wang, F. Fang, X. Chu, Z. Wei, J. Li, X. Chen, and F. Wang, Appl. Surf. Sci. 263, 14 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.08.048
31.
31. Q. Peng, X. Sun, J. C. Spagnola, C. Saquing, S. A. Khan, R. J. Spontak, and G. N. Parsons, ACS Nano 3, 546 (2009).
http://dx.doi.org/10.1021/nn8006543
32.
32. C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, J. Mater. Chem. C 2, 2123 (2014).
http://dx.doi.org/10.1039/c3tc32418d
33.
33. F. Kayaci, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar, Appl. Mater. Interfaces 4, 6185 (2012).
http://dx.doi.org/10.1021/am3017976
34.
34. F. Kayaci, C. Ozgit-Akgun, N. Biyikli, and T. Uyar, RSC Adv. 3, 6817 (2013).
http://dx.doi.org/10.1039/c3ra40359a
35.
35. A. Haider, C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, “Low-Temperature Deposition of Hexagonal Boron Nitride Via Sequential Injection of Triethylboron and N2/H2 Plasma,” J. Am. Ceram. Soc. (in press)
http://dx.doi.org/10.1111/jace.13213
36.
36. A. Pakdel, Y. Bando, D. Shtansky, and D. Golberg, Surf. Innov. 1, 32 (2013).
http://dx.doi.org/10.1680/si.12.00007
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4894782 for TEM images of AlN coated nylon nanofibers. [Supplementary Material]
38.
38. L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, ACS Nano 8, 1457 (2014).
http://dx.doi.org/10.1021/nn500059s
39.
39. M. Das, A. K. Basu, S. Ghatak, and A. G. Joshi, J. Eur. Ceram. Soc. 29, 2129 (2009).
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.12.004
40.
40. X. Gouin, P. Grange, L. Bois, P. L’Haridon, and Y. Laurent, J. Alloy Compd. 224, 22 (1995).
http://dx.doi.org/10.1016/0925-8388(95)01532-9
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4894782
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4894782
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4894782
2014-09-08
2016-12-08

Abstract

Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4894782.html;jsessionid=yHJDP486pyK_mSlZ-VNr4XCg.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4894782&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4894782&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4894782'
Top,Right1,Right2,Right3,