Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. G. Guzman-Verri and L. C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007).
2. S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).
3. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).
4. C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, and M. Kawai, Appl. Phys. Express 5, 045802 (2012).
5. A. Fleurence, R. Friedlein, T. Osaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).
6. Z.-L. Liu, M.-X. Wang, J.-P. Xu, J.-F. Ge, G. Le Lay, P. Vogt, D. Qian, C.-L. Gao, C. Liu, and J.-F. Jia, New J. Phys. 16, 075006 (2014).
7. Y. Fukaya, I. Mochizuki, M. Maekawa, K. Wada, T. Hyodo, I. Matsuda, and A. Kawasuso, Phys. Rev. B 88, 205413 (2013).
8. R. Arafune, C.-L. Lin, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, and M. Kawai, Surf. Sci. 608, 297 (2013).
9. H. Liu, J. Gao, and J. Zhao, J. Phys.: Conf. Ser. 491, 012007 (2014).
10. A. Resta, T. Leoni, C. Barth, A. Ranguis, C. Becker, T. Bruhn, P. Vogt, and G. Le Lay, Sci. Rep. 3, 2399 (2013).
11. N. W. Johnson, P. Vogt, A. Resta, P. De Padova, I. Perez, D. Muir, E. Z. Kurmaev, G. Le Lay, and A. Moewes, Adv. Funct. Mater 24, 5253 (2014).
12. H. Enriquez, S. Vizzini, A. Kara, B. Lalmi, and H. Oughaddou, J. Phys.: Condens. Matter 24, 314211 (2012)
13. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.-Y. Hoarau, B. Aufray, and J.-P. Bibérian, J. Phys.: Condens. Matter 24, 172001 (2012).
14. H. Jamgotchian, Y. Colignon, B. Ealet, B. Parditka, J.-Y. Hoarau, C. Girardeaux, B. Aufray, and J.-P. Bibérian, J. Phys: Conf. Ser. 491, 012001 (2014).
15. E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. van den Broek, M. Houssa, M. Fanciulli, and A. Molle, J. Phys. Chem. C 117, 16719 (2013).
16. Z.-X. Guo, S. Furuya, J.-I. Iwata, and A. Oshiyama, Phys. Rev. B 87, 235435 (2013).
17. P. Moras, T. O. Mentes, P. M. Sheverdyaeva, A. Locatelli, and C. Carbone, J. Phys.: Condens. Matter 26, 185001 (2014).
18. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).
19. H. Enriquez, A. Kara, A. J. Mayne, G. Dujardin, H. Jamgotchian, B. Aufray, and H. Oughaddou, J. Phys.: Conf. Ser. 491, 012004 (2014).
20. G. Le Lay, P. De Padova, A. Resta, T. Bruhn, and P. Vogt, J. Phys. D: Appl. Phys. 45, 392001 (2012).
21. G. Le Lay, S. Cahangirov, L. Xian, and A. Rubio, “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene,” New J. Phys. (in press).
22. A. Acun, B. Poelsema, H. J. W. Zandvliet, and R. van Gastel, Appl. Phys. Lett. 103, 263119 (2013).
23. N. Tsuboi, H. Okuyama, and T. Aruga, Phys. Rev. B 71, 195414 (2005).

Data & Media loading...


Article metrics loading...



Silicon atoms deposited on Ag(111) produce various single layer silicene sheets with different buckling patterns and periodicities. Low temperature scanning tunneling microscopy reveals that one of the silicene sheets, the hypothetical √7 × √7 silicene structure, on 2√3 × 2√3 Ag(111), is inherently highly defective and displays no long-range order. Moreover, Auger and photoelectron spectroscopy measurements reveal its sudden death, to end, in a dynamic fating process at ∼300 °C. This result clarifies the real nature of the 2√3 × 2√3R(30°) silicene phase and thus helps to understand the diversity of the silicene sheets grown on Ag(111).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd