Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 60506051 (2009).
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643647 (2012).
3. H.-S. Kim, C.-R. Lee, J.-H. Im, K. B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
4. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature (London) 499, 316319 (2013).
5. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature (London) 501, 395398 (2013).
6. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133138 (2014).
7. M. J. Jeon, J. H. Noh, Y. C. Kim, E. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13, 897903 (2014).
8. G. Giorgi, J.-I. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis,” J. Phys. Chem. Lett. 4, 42134216 (2013).
9. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344347 (2013).
10. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341344 (2013).
11. Y. Ogomi, K. Kukihara, S. Qing, T. Toyoda, K. Yoshino, S. Pandey, H. Momose, and S. Hayase, “Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells,” ChemPhysChem 15, 10621069 (2014).
12. Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, and C.-M. Hsu, “High voltage and efficient bilayer heterojunction solar cells based on organic-inorganic hybrid perovskite absorber with low-cost flexible substrate,” Phys. Chem. Chem. Phys. 16, 60336040 (2014).
13. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci. 7, 399407 (2014).
14. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982988 (2014).
15. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 8979025 (2013).
16. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature (London) 395, 583585 (1998).
17. K. J. Jiang, K. Manseki, Y. H. Yu, N. Masaki, K. Suzuki, Y. L. Song, and S. Yanagida, “Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT,” Adv. Funct. Mater. 19, 24812485 (2009).
18. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 1908719090 (2013).
19. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarker, Md. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7, 486491 (2013).
20. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, and H. J. Snaith, “High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 31243128 (2013).
21. P. Docampo, S. Guldin, T. Leijtens, N. K. Moel, U. Steiner, and H. J. Snaith, “Lessons learned: From dye-sensitized solar cells to all-solid-state hybrid devices,” Adv. Mater. 26, 40134030 (2014).
22. A. Ishii and T. Miyasaka, “A high voltage organic–inorganic hybrid photovoltaic cell sensitized with metal–ligand interfacial complexes,” Chem. Commun. 48, 99009902 (2012).
23. A. Ishii and T. Miyasaka, “Metallocene Molecular complex as visible light absorber for high voltage organic-inorganic hybrid photovoltaic cell,” ChemPhysChem 15, 10281032 (2014).
24. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, “MAPbI3−xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 46134618 (2013).
25. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 15841589 (2014).
26. B. B. He, U. Preckwinkel, and K. L. Smith, “Fundamentals of two-dimensional X-ray diffraction (XRD2),” Adv. X-Ray Anal. 43, 304311 (2000), available at
27. B. B. He, U. Preckwinkel, and K. L. Smith, “Comparison between conventional and two-dimensional XRD,” Adv. X-Ray Anal. 46, 3742 (2003), available at
28. Y. Lei, Q. Liao, H. Fu, and J. Yao, “Phase- and shape-controlled synthesis of single crystalline perylene nanosheets and its optical properties,” J. Phys. Chem. C 113, 1003810043 (2009).
29. Y. Maruyama, T. Kobayashi, H. Inokuchi, and S. Iwashima, “Charge-carrier drift mobility in perylene single crystals,” Mol. Cryst. Liq. Cryst. 20, 373380 (1973).
30. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510519 (1961).
31. B. J. Mulder, “Photoconductivity spectra of stable and metastable single-crystals of perylene,” Recl. Trav. Chim. Pays-Bas 88, 713728 (1965).
32.See supplementary material at for experimental details, X-ray fluorescence analysis, photoelectron yield and absorption spectra, XRD data, and J-V curves of the devices. [Supplementary Material]

Data & Media loading...


Article metrics loading...



A fully crystalline heterojunction of organo-metal-halide perovskite, CHNHPbICl (X < 0.24), and perylene constitutes a planar photovoltaic cell that yields a photovoltage exceeding 1.2 V with a single junction cell absorbing up to 800 nm. Here, perylene not only works as a hole conductor but also contributes to photovoltage as a photoconductor. The crystalline plane orientation of perovskite prepared on TiO was controlled by thermal annealing such that the lead halide (110) plane that participates in carrier conduction is highly oriented to enhance the photovoltaic performance. The crystal orientation improves the heterojunctionstructure with perylene. For the best cell with high crystalline orientation, a total voltage loss is significantly minimized to 0.32 V with respect to the absorption band gap of 1.55 eV. The planar crystal cells generate high open-circuit voltages of 1.15–1.22 V, which is close to a theoretical maximal voltage (1.25–1.3 V) described by the Shockley-Queisser efficiency limit. The cell yielded energy conversion efficiency up to 4.96%.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd