Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
2. D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H. Y. Chu, Appl. Phys. Lett. 93, 142111 (2008).
3. J. K. Jeong, S. Yang, D. H. Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho, Appl. Phys. Lett. 95, 123505 (2009).
4. U. K. Kim, S. H. Rha, J. H. Kim, Y. J. Chung, J. Jung, E. S. Hwang, J. Lee, T. J. Park, J.-H. Choi, and C. S. Hwang, J. Mater. Chem. C 1, 6695 (2013).
5. S. W. Heo, Y. D. Ko, Y. S. Kim, and D. K. Moon, J. Mater. Chem. C 1, 7009 (2013).
6. T. Minami, H. Sonohara, S. Takata, and H. Sato, Jpn. J. Appl. Phys. 33, L1693 (1994).
7. Z. Chen, E. Wiedemann, and Q. Liu, “Wet etching of zinc tin oxide thin films,” U.S. patent 0,075,421 A1 (2009).
8. J. Lee, S.-C. Lee, C. S. Hwang, and J.-H. Choi, J. Mater. Chem. C 1, 6364 (2013).
9. C. H. Kim, Y. S. Rim, and H. J. Kim, ACS Appl. Mater. Interfaces 5, 6108 (2013).
10. W. H. Hlaing Oo, S. Tabatabaei, M. D. McCluskey, J. B. Varley, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 82, 193201 (2010).
11. A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).
12. C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
13. T. Koida, H. Shibata, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, and H. Fujiwara, J. Appl. Phys. 111, 063721 (2012).
14. H.-R. Kim, D.-H. Kim, E. Byon, G.-H. Lee, G.-H. Lee, and P.-K. Song, Jpn. J. Appl. Phys. 49, 121101 (2010).
15. W. Korner, P. Gumbsch, and C. Elsasser, Phys. Rev. B 86, 165210 (2012).
16. D. M. Lee, J. K. Kim, J. C. Hao, H. K. Kim, J. S. Yoon, and J. M. Lee, J. Alloys Compd. 583, 535 (2014).
17. S.-H. Yang, J. Y. Kim, M. J. Park, K.-H. Choi, J. S. Kwak, H.-K. Kim, and J.-M. Lee, Surf. Coat. Technol. 206, 5067 (2012).
18. S.-H. Yang, D. M. Lee, J. Y. Kim, J. W. Kang, and J. M. Lee, J. Phys. D: Appl. Phys. 46, 125103 (2013).
19. H. R. Kim, G. H. Lee, and D. H. Kim, J. Phys. D: Appl. Phys. 44, 185203 (2011).
20.We suspect that the lower Ne of the sample treated at 200 °C is a result of the strongly modified surface of the films after the plasma treatment. The Hall effect measurements assume a homogeneous bulk film, however, the films treated at 200 °C are actually more accurately described as a multilayer composed of a discontinuous layer of Sn metal particles, a porous layer depleted of Sn and the bulk of the film. The plotted values for the sample treated at 200 °C, mainly for the treatment of 5 min, could therefore be influenced by this measurement artifact.
21.See supplementary material at for details on the effects of the surface metal particles on the optical properties of the film. [Supplementary Material]
22. M. Albrecht, R. Schewski, K. Irmscher, Z. Galazka, T. Markurt, M. Naumann, T. Schulz, R. Uecker, R. Fornari, S. Meuret, and M. Kociak, J. Appl. Phys. 115, 053504 (2014).
23. M. Schwind, V. P. Zhdanov, I. Zoric, and B. Kasemo, Nano Lett. 10, 931 (2010).
24. K. Nomura, T. Kamiya, and H. Hosono, ECS J. Solid State Sci. Technol. 2, P5 (2013).
25. F. Bekisli, M. Stavola, W. B. Fowler, L. Boatner, E. Spahr, and G. Lupke, Phys. Rev. B 84, 035213 (2011).
26. P. Agoston, K. Albe, R. M. Nieminen, and M. J. Puska, Phys. Rev. Lett. 103, 245501 (2009).
27. R. G. Pavelko, H. Daly, M. Hübner, C. Hardacre, and E. Llobet, J. Phys. Chem. C 117, 4158 (2013).
28. Q. Zhu, Q. Ma, D. B. Buchholz, R. P. H. Chang, M. J. Bedzyk, and T. O. Mason, J. Appl. Phys. 115, 033512 (2014).
29. L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif, Adv. Funct. Mater. 23, 5177 (2013).
30. T. B. Reed, Free Energy of Formation of Binary Compounds (MIT Press, Cambridge, MA, 1971).

Data & Media loading...


Article metrics loading...



Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H)-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd