Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4896077
1.
1. L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.3719
2.
2. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
http://dx.doi.org/10.1080/00018736900101307
3.
3. A. D. Yoffe, “Layer compounds,” Annu. Rev. Mater. Sci. 3, 147 (1973).
http://dx.doi.org/10.1146/annurev.ms.03.080173.001051
4.
4. A. D. Yoffe, Adv. Phys. 42, 173 (1993).
http://dx.doi.org/10.1080/00018739300101484
5.
5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
6.
6. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Cho, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
http://dx.doi.org/10.1038/ncomms2018
7.
7. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).
http://dx.doi.org/10.1021/nl304777e
8.
8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
9.
9. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
10.
10. C. Gong, L. Colombo, R. M. Wallace, and K. Cho, Nano Lett. 14, 1714 (2014).
http://dx.doi.org/10.1021/nl403465v
11.
11. S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, ACS Nano 8, 2880 (2014).
http://dx.doi.org/10.1021/nn500044q
12.
12. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Nano Lett. 13, 2615 (2013).
http://dx.doi.org/10.1021/nl4007479
13.
13. S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, Nano Lett. 14, 1354 (2014).
http://dx.doi.org/10.1021/nl404396p
14.
14. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
15.
15. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. Muller, and J. C. Hone, Nat. Mater. 12, 554 (2013).
http://dx.doi.org/10.1038/nmat3633
16.
16. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).
http://dx.doi.org/10.1038/nmat3673
17.
17. W. Wu, D. De, S. C. Chang, Y. Wang, H. Peng, J. Bao, and S. S. Pei, Appl. Phys. Lett. 102, 142106 (2013).
http://dx.doi.org/10.1063/1.4801861
18.
18. S. Das and J. Appenzeller, Nano Lett. 13, 3396 (2013).
http://dx.doi.org/10.1021/nl401831u
19.
19. H. Liu, A. T. Neal, and P. D. Ye, ACS Nano 6, 8563 (2012).
http://dx.doi.org/10.1021/nn303513c
20.
20. H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, ACS Nano 8, 1031 (2014).
http://dx.doi.org/10.1021/nn405916t
21.
21. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, and Y. J. Chabal, ACS Nano 7, 11350 (2013).
http://dx.doi.org/10.1021/nn4052138
22.
22. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultra-thin MoS2 transistors,” Nat. Mater. (2014).
http://dx.doi.org/10.1038/nmat4080
23.
23. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90011-5
24.
24. S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. Irwin, Phys. Rev. B 44, 3955 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3955
25.
25. J. Heising and M. G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999).
http://dx.doi.org/10.1021/ja983043c
26.
26. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
http://dx.doi.org/10.1021/nl201874w
27.
27. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, ACS Nano 6, 7311 (2012).
http://dx.doi.org/10.1021/nn302422x
28.
28. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nano Lett. 13, 6222 (2013).
http://dx.doi.org/10.1021/nl403661s
29.
29. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater. 12, 850 (2013).
http://dx.doi.org/10.1038/nmat3700
30.
30. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
http://dx.doi.org/10.1038/nchem.1589
31.
31. F. Wypych and R. Schillhorn, J. Chem. Soc. Chem. Commun. 1992, 1386.
http://dx.doi.org/10.1039/c39920001386
32.
32. H.-L. Tsai, J. Heising, J. L. Schindler, C. R. Kannewurf, and M. G. Kanatzidis, Chem. Mater. 9, 879 (1997).
http://dx.doi.org/10.1021/cm960579t
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4896077
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4896077
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4896077
2014-09-25
2016-12-09

Abstract

Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4896077.html;jsessionid=Kw_rNzKrThA0LP6_Z5lCIQqN.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4896077&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4896077&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4896077'
Top,Right1,Right2,Right3,