Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. F. Mattheiss, Phys. Rev. B 8, 3719 (1973).
2. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
3. A. D. Yoffe, “Layer compounds,” Annu. Rev. Mater. Sci. 3, 147 (1973).
4. A. D. Yoffe, Adv. Phys. 42, 173 (1993).
5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
6. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Cho, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
7. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).
8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
9. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
10. C. Gong, L. Colombo, R. M. Wallace, and K. Cho, Nano Lett. 14, 1714 (2014).
11. S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, ACS Nano 8, 2880 (2014).
12. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Nano Lett. 13, 2615 (2013).
13. S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, Nano Lett. 14, 1354 (2014).
14. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012).
15. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. Muller, and J. C. Hone, Nat. Mater. 12, 554 (2013).
16. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).
17. W. Wu, D. De, S. C. Chang, Y. Wang, H. Peng, J. Bao, and S. S. Pei, Appl. Phys. Lett. 102, 142106 (2013).
18. S. Das and J. Appenzeller, Nano Lett. 13, 3396 (2013).
19. H. Liu, A. T. Neal, and P. D. Ye, ACS Nano 6, 8563 (2012).
20. H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, ACS Nano 8, 1031 (2014).
21. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu, and Y. J. Chabal, ACS Nano 7, 11350 (2013).
22. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultra-thin MoS2 transistors,” Nat. Mater. (2014).
23. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).
24. S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. Irwin, Phys. Rev. B 44, 3955 (1991).
25. J. Heising and M. G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999).
26. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
27. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, ACS Nano 6, 7311 (2012).
28. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nano Lett. 13, 6222 (2013).
29. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater. 12, 850 (2013).
30. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
31. F. Wypych and R. Schillhorn, J. Chem. Soc. Chem. Commun. 1992, 1386.
32. H.-L. Tsai, J. Heising, J. L. Schindler, C. R. Kannewurf, and M. G. Kanatzidis, Chem. Mater. 9, 879 (1997).

Data & Media loading...


Article metrics loading...



Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd