Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/9/10.1063/1.4896435
1.
1. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC, Boca Raton, FL, 2006) Chap. 1.
2.
2. J. Yang and F. Stabler, J. Electron. Mater. 38, 1245 (2009).
http://dx.doi.org/10.1007/s11664-009-0680-z
3.
3. J. Ma, O. Delaire, A. F. May, C. E. Carlton, M. A. McGuire, L. H. VanBebber, D. L. Abernathy, G. Ehlers, T. Hong, A. Huq, W. Tian, V. M. Keppens, Y. S. Horn, and B. C. Sales, Nat. Nanotechnol. 8, 445 (2013).
http://dx.doi.org/10.1038/nnano.2013.95
4.
4. H. Wang, J. F. Li, M. Zhou, and T. Sui, Appl. Phys. Lett. 93, 202106 (2008).
http://dx.doi.org/10.1063/1.3029774
5.
5. J. Xu, H. Li, B. Du, X. Tang, Q. Zhang, and C. Uher, J. Mater. Chem. 20, 6138 (2010).
http://dx.doi.org/10.1039/c0jm00138d
6.
6. S. N. Zhang, T. J. Zhu, S. H. Yang, C. Yu, and X. B. Zhao, J. Alloys Compd. 499, 215 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.03.170
7.
7. P. A. Sharma, J. D. Sugar, and D. L. Medlin, J. Appl. Phys. 107, 113716 (2010).
http://dx.doi.org/10.1063/1.3446094
8.
8. S. N. Zhang, T. J. Zhu, S. H. Yang, C. Yu, and X. B. Zhao, Acta Mater. 58, 4160 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.04.007
9.
9. H. J. Wu, S. W. Chen, T. Ikeda, and G. J. Snyder, Acta Mater. 60, 6144 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.07.057
10.
10. B. Du, H. Li, J. Xu, X. Tang, and C. Uher, Chem. Mater. 22, 5521 (2010).
http://dx.doi.org/10.1021/cm101503y
11.
11. B. L. Du, H. Li, and X. F. Tang, J. Alloys Compd. 509, 2039 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.10.131
12.
12. D. T. Morelli, V. Jovovic, and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.035901
13.
13. V. Jovovic and J. P. Heremans, Phys. Rev. B 77, 245204 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245204
14.
14. R. W. Armstrong, J. W. Faust, and W. A. Tiller, J. Appl. Phys. 31, 1954 (1960).
http://dx.doi.org/10.1063/1.1735478
15.
15. K. Hoang, S. D. Mahanti, J. R. Salvador, and M. G. Kanatzidis, Phys. Rev. Lett. 99, 156403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.156403
16.
16. S. B. Zhang et al., Phys. Rev. B. 57, 9642 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9642
17.
17. J. Sugar and D. Medlin, J. Alloys Compd. 478, 7582 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.11.054
18.
18. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. P. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004).
http://dx.doi.org/10.1126/science.1092963
19.
19. X. Z. Ke, C. F. Chen, J. H. Yang, L. J. Wu, J. Zhou, Q. Li, Y. M. Zhu, and P. R. C. Kent, Phys. Rev. Lett. 103, 145502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.145502
20.
20. W. Q. Ao, W. A. Sun, J. Q. Li, F. S. Liu, and Y. Du, J. Alloys Compd. 475, L22 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.07.140
21.
21. H. Wang, J. F. Li, C. W. Nan, M. Zhou, W. S. Liu, B. P. Zhang, and T. Kita, Appl. Phys. Lett. 88, 092104 (2006).
http://dx.doi.org/10.1063/1.2181197
22.
22. B. A. Cook, M. J. Kramer, X. Wei, J. L. Harringa, and E. M. Levin, J. Appl. Phys. 101, 053715 (2007).
http://dx.doi.org/10.1063/1.2645675
23.
23. J. R. Salvador, J. Yang, X. Shi, H. Wang, and A. A. Wereszczak, J. Solid State Chem. 182, 2088 (2009).
http://dx.doi.org/10.1016/j.jssc.2009.05.024
24.
24. R. Mohanraman, R. Sankar, F. C. Chou, C. H. Lee, and Y. Y. Chen, J. Appl. Phys. 114, 163712 (2013).
http://dx.doi.org/10.1063/1.4828478
25.
25. R. Mohanraman, R. Sankar, K. M. Boopathi, F. C. Chou, C. W. Chu, C. H. Lee, and Y. Y. Chen, J. Mater. Chem A 2, 28392844 (2014).
http://dx.doi.org/10.1039/c3ta14547f
26.
26. Y. Pei, J. F. Lensch, E. S. Toberer, D. L. Medlin, and G. J. Snyder, Adv. Funct. Mater. 21, 241 (2010).
http://dx.doi.org/10.1002/adfm.201000878
27.
27. Y. Pei, N. A. Heinz, A. LaLonde, and G. J. Snyder, Energy Environ. Sci. 4, 3640 (2011).
http://dx.doi.org/10.1039/c1ee01928g
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4896435 for details about the site occupancy, EPMA images, nH graph, calculation of effective mass (m*), Cp graph, thermal stability of AgSb0.97Sn0.03Te2 sample. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/9/10.1063/1.4896435
Loading
/content/aip/journal/aplmater/2/9/10.1063/1.4896435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/9/10.1063/1.4896435
2014-09-25
2016-09-30

Abstract

We report a maximal figure of merit (ZT) value of 1.1 at 600 K was obtained for the sample of which = 0.03, representing an enhancement greater than 20% compared with a pristine AgSbTe sample. This favorable thermoelectric performance originated from the optimal Sn2+ substitution for Sb 3+ in AgSbTe, which not only increased electrical conductivity but also led to a substantial reduction in thermal conductivity that was likely caused by an enhanced phonon-scattering mechanism through the combined effects of lattice defects and the presence of Ag Te nanoprecipitates dispersed in the matrix.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/9/1.4896435.html;jsessionid=AdECGR_zcXZYj7CNULquzSbk.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/9/10.1063/1.4896435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/9/10.1063/1.4896435&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/9/10.1063/1.4896435'
Top,Right1,Right2,Right3,