Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. H. Lee and H. Shin, Adv. Drug Delivery Rev. 59(4–5), 339359 (2007).
2.V. Aina, C. Magistris, G. Cerrato, G. Martra, G. Viscardi, G. Lusvardi, G. Malavasi, and L. Menabue, Langmuir 30(16), 47034715 (2014).
3.A. A. Amini and L. S. Nair, Biomed. Mater. 7(2), 024105 (2012).
4.K. Lee, E. A. Silva, D. J. Mooney, and J. R. Soc, Interface 8(55), 153170 (2011).
5.J. P. Gleeson, N. A. Plunkett, and F. J. O’Brien, Eur. Cells Mater. 20, 218230 (2010).
6.F. G. Lyons, J. P. Gleeson, S. Partap, K. Coghlan, and F. J. O’Brien, Clin. Orthop. Relat. Res 472(4), 13181328 (2014).
7.Z. S. Patel, M. Yamamoto, H. Ueda, Y. Tabata, and A. G. Mikos, Acta Biomater. 4(5), 11261138 (2008).
8.M. Biondi, L. Indolfi, F. Ungaro, F. Quaglia, M. I. La Rotonda, and P. A. Netti, J. Mater. Sci.: Mater. Med. 20(10), 21172128 (2009).
9.R. A. Jain, Biomaterials 21(23), 24752490 (2000).
10.L. Solorio, C. Zwolinski, A. W. Lund, M. J. Farrell, and J. P. Stegemann, J. Tissue Eng. Regener. Med. 4(7), 514523 (2010).
11.S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Controlled Release 100(1), 528 (2004).
12.S. Takka and F. Acarturk, J. Microencapsulation 16(3), 275290 (1999).
13.D. Lozano, M. Manzano, J. C. Doadrio, A. J. Salinas, M. Vallet-Regi, E. Gomez-Barrena, and P. Esbrit, Acta Biomater. 6(3), 797803 (2010).
14.N. Sivadas, D. O’Rourke, A. Tobin, V. Buckley, Z. Ramtoola, J. G. Kelly, A. J. Hickey, and S. A. Cryan, Int. J. Pharm. 358(1–2), 159167 (2008).
15.M. Manzano, D. Lozano, D. Arcos, S. Portal-Nunez, C. L. la Orden, P. Esbrit, and M. Vallet-Regi, Acta Biomater. 7(10), 35553562 (2011).
16.F. J. O’Brien, J. Gleeson, and N. Plunkett, “A collagen/hydroxyapatite composite scaffold, and process for the production thereof,” patent number WO 2008096334 A3 (14 August 2008).
17.K. S. Weadock, E. J. Miller, E. L. Keuffel, and M. G. Dunn, J. Biomed. Mater. Res. 32(2), 221226 (1996).
18.V. Kartsogiannis and K. W. Ng, Mol. Cell. Endocrinol. 228(1–2), 79102 (2004).
19.H. Sudo, H. A. Kodama, Y. Amagai, S. Yamamoto, and S. Kasai, J. Cell Biol. 96(1), 191198 (1983).
20.A. Yamaguchi, T. Komori, and T. Suda, Endocr. Rev. 21(4), 393411 (2000).
21.K. J. Livak and T. D. Schmittgen, Methods 25(4), 402408 (2001).
22.M. L. Bruschi, M. L. C. Cardoso, M. B. Lucchesi, and M. P. D. Gremiao, Int. J. Pharm. 264(1–2), 4555 (2003).
23.M. G. Haugh, C. M. Murphy, R. C. McKiernan, C. Altenbuchner, and F. J. O’Brien, Tissue Eng., Part A 17(9–10), 12011208 (2011).
24.H. W. Kang, Y. Tabata, and Y. Ikada, Biomaterials 20(14), 13391344 (1999).
25.A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, and N. Roveri, Biomaterials 22(8), 763768 (2001).
26.R. Vehring, Pharm. Res. 25(5), 9991022 (2008).
27.A. Lopez-Noriega, E. Ruiz-Hernandez, E. Quinlan, G. Storm, W. E. Hennink, and F. J. O’Brien, J. Controlled Release 187, 158166 (2014).

Data & Media loading...


Article metrics loading...



Collagen-hydroxyapatite scaffolds are outstanding materials for bone tissue engineering as they are biocompatible, bioresorbable, osteoconductive, and osteoinductive. The objective of the present work was to assess the potential of increasing their regenerative capacity by functionalising the scaffolds for therapeutic delivery. This was achieved by the utilization of polymeric drug carriers. With this purpose, alginate, chitosan, gelatine, and poly(lactic-co-glycolic acid) (PLGA) microparticles eluting PTHrP 107-111, an osteogenic pentapeptide, were fabricated and tested by incorporating them into the scaffolds. Among them, PLGA microparticles show the most promising characteristics for use as drug delivery devices. Following the incorporation of the microparticles, the scaffolds maintained their interconnected porous structure and the mechanical properties of the materials were not adversely affected. In addition, the microparticles released all their PTHrP 107-111 cargo. Most importantly, the delivered peptide proved to be bioactive and promoted enhanced osteogenesis as assessed by alkaline phosphatase production and osteocalcin and osteopontin gene expression when pre-osteoblastic cells were seeded on the scaffolds. While the focus was on bone repair, the release system described in this study can be used for the delivery of therapeutics for healing and regeneration of a variety of tissue types depending on the type of collagen scaffold chosen.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd