Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/1/10.1063/1.4904820
1.
1.D.-H. Kim, S. M. Richardson-Burns, J. L. Hendricks, C. Sequera, and D. C. Martin, “Effect of immobilized nerve growth factor on conductive polymers: Electrical properties and cellular response,” Adv. Funct. Mater. 17(1), 7986 (2007).
http://dx.doi.org/10.1002/adfm.200500594
2.
2.R. A. Green, N. H. Lovell, G. G. Wallace, and L. A. Poole-warren, “Biomaterials conducting polymers for neural interfaces: Challenges in developing an effective long-term implant,” Biomaterials 29, 33933399 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.04.047
3.
3.R. T. Hassarati, J. A. Goding, S. Baek, A. J. Patton, L. A. Poole-Warren, and R. A. Green, “Stiffness quantification of conductive polymers for bioelectrodes,” J. Polym. Sci., Part B: Polym. Phys. 52, 666 (2014).
http://dx.doi.org/10.1002/polb.23465
4.
4.M. Sasaki, B. C. Karikkineth, K. Nagamine, H. Kaji, K. Torimitsu, and M. Nishizawa, “Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering,” Adv. Healthcare Mater 3, 19191927 (2014).
http://dx.doi.org/10.1002/adhm.201400209
5.
5.S. Baek, R. Green, A. Granville, P. Martens, and L. Poole-warren, “Thin film hydrophilic electroactive polymer coatings for bioelectrodes,” J. Mater. Chem. B 1, 3803 (2013).
http://dx.doi.org/10.1039/c3tb20152j
6.
6.R. A. Green, R. T. Hassarati, J. A. Goding et al., “Conductive hydrogels: Mechanically robust hybrids for use as biomaterials,” Macromol. Biosci. 12(4), 494501 (2012).
http://dx.doi.org/10.1002/mabi.201100490
7.
7.G. C. Arteaga, M. A. Valle, M. Antilén, M. Romero, A. Ramos, and L. Hernández, “Nucleation and growth mechanism of electro-synthesized poly(pyrrole) on steel,” Int. J. Electrochem. Sci. 8, 41204130 (2013).
8.
8.R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608622 (2000).
http://dx.doi.org/10.1021/cm990537f
9.
9.J. Ding, W. E. Price, S. F. Ralph, and G. G. Wallace, “Synthesis and properties of a mechanically strong poly (bithiophene) composite polymer containing a polyelectrolyte dopant,” Synth. Met. 110, 123132 (2000).
http://dx.doi.org/10.1016/s0379-6779(99)00277-5
10.
10.J.-H. Kim, Y.-C. Jung, S.-H. Suh, and J.-S. Kim, “MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications,” J. Nanosci. Nanotechnol. 6(11), 33253328 (2006).
http://dx.doi.org/10.1166/jnn.2006.002.
11.
11.R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, and S. Ramakrishna, “Applications of conducting polymers and their issues in biomedical engineering,” J. R. Soc., Interface 7(Suppl. 5), S559S579 (2010).
http://dx.doi.org/10.1098/rsif.2010.0120.focus
12.
12.A. Blau, A. Murr, S. Wolff et al., “Flexible all-polymer microelectrode arrays for the capture of cardiac and neuronal signals,” Biomaterials 32(7), 17781786 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.11.014
13.
13.M. Romero, M. A. Valle, R. Río, F. R. Díaz, and F. Armijo, “Polymers nucleation and growth mechanism: Solubility, a determining factor,” Int. J. Electrochem. Sci. 7, 1013210141 (2012).
14.
14.J. H. A. Bell and J. W. Haycock, “Next generation nerve guides: Materials, fabrication, growth factors, and cell delivery,” Tissue Eng., Part B 18(2), 116128 (2012).
http://dx.doi.org/10.1089/ten.teb.2011.0498
15.
15.G. L. Mario Cheong, K. S. Lim, A. Jakubowicz, P. J. Martens, L. A. Poole-Warren, and R. A. Green, “Conductive hydrogels with tailored bioactivity for implantable electrode coatings,” Acta Biomater. 10(3), 12161226 (2014).
http://dx.doi.org/10.1016/j.actbio.2013.12.032
16.
16.Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424428 (2011).
http://dx.doi.org/10.1038/nmat3001
17.
17.L. M. Lira and S. I. Córdoba de Torresi, “Conducting polymer–hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks,” Electrochem. commun. 7(7), 717723 (2005).
http://dx.doi.org/10.1016/j.elecom.2005.04.027
18.
18.J. Li, W. Li, H. Cheng, L. Zhang, Y. Li, and C. C. Han, “Early stages of nucleation and growth in melt crystallized polyethylene,” Polymer (Guildf) 53(12), 23152319 (2012).
http://dx.doi.org/10.1016/j.polymer.2012.03.054
19.
19.S. P. Armes, “Conducting polymer colloids,” Curr. Opin. Colloid Interface Sci. 1(2), 214220 (1996).
http://dx.doi.org/10.1016/S1359-0294(96)80007-0
20.
20.H. Pang, T. Chen, G. Zhang, B. Zeng, and Z.-M. Li, “An electrically conducting polymer/graphene composite with a very low percolation threshold,” Mater. Lett. 64(20), 22262229 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.07.001
21.
21.J. D. Cao, N. T. Kirkland, K. J. Laws, N. Birbilis, and M. Ferry, “Ca-Mg-Zn bulk metallic glasses as bioresorbable metals,” Acta Biomater. 8(6), 23752383 (2012).
http://dx.doi.org/10.1016/j.actbio.2012.03.009
22.
22.F. Cicoira, M. Sessolo, O. Yaghmazadeh, J. A. DeFranco, S. Y. Yang, and G. G. Malliaras, “Influence of device geometry on sensor characteristics of planar organic electrochemical transistors,” Adv. Mater. 22(9), 10121016 (2010).
http://dx.doi.org/10.1002/adma.200902329
23.
23.L. Basiricò, P. Cosseddu, A. Scidà, B. Fraboni, G. G. Malliaras, and A. Bonfiglio, “Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors,” Org. Electron. 13(2), 244248 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.11.010
24.
24.L. Poole-Warren, N. Lovell, S. Baek, and R. Green, “Development of bioactive conducting polymers for neural interfaces,” Expert Rev. Med. Devices 7(1), 3549 (2010).
http://dx.doi.org/10.1586/erd.09.58
25.
25.M. R. De Moura, F. A. Aouada, M. R. Guilherme, E. Radovanovic, A. F. Rubira, and E. C. Muniz, “Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate- Ca2+ with LCST tailored close to human body temperature,” Polym. Test. 25(7), 961969 (2006).
http://dx.doi.org/10.1016/j.polymertesting.2006.06.002
26.
26.H. Warren, “Electrically conducting PEDOT: PSS - gellan gum hydrogels,” Mater. Res. Soc. Symp. Proc. 1569, 15 (2013).
http://dx.doi.org/10.1557/opl.2013.1101
27.
27.R. A. Green, G. J. Suaning, and N. H. Lovell, “Bioactive conducting polymers for neural interfaces application to vision prosthesis,” 4th International IEEE/EMBS Conference on Neural Engineering (IEEE, 2009), pp. 6063.
28.
28.S. Ghosh and O. Inganäs, “Networks of electron-conducting polymer in matrices of ion-conducting polymers applications to fast electrodes,” Electrochem. Solid-State Lett. 3(5), 213215 (1999).
http://dx.doi.org/10.1149/1.1391005
29.
29.L. F. Warren and D. P. Anderson, “Polypyrrole films from aqueous electrolytes: The effect of anions upon order,” J. Electrochem. Soc. 134(1), 101 (1987).
http://dx.doi.org/10.1149/1.2100383
30.
30.E.-S. Lee, S.-M. Lee, D. J. Shanefield, and W. R. Cannon, “Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin,” J. Am. Ceram. Soc. 91(4), 11691174 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02247.x
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/1/10.1063/1.4904820
Loading
/content/aip/journal/aplmater/3/1/10.1063/1.4904820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/1/10.1063/1.4904820
2015-01-09
2016-12-08

Abstract

This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol) methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (MgZnCaNa) particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS). Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/1/1.4904820.html;jsessionid=MoFDibM2BRVRfS3vlL2kkELz.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/1/10.1063/1.4904820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/1/10.1063/1.4904820&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4904820'
Top,Right1,Right2,Right3,