Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
2.P. M. Feenstra, D. Jena, and G. Gu, “Single-particle tunneling in doped graphene-insulator-graphene junctions,” J. Appl. Phys. 111, 043711 (2012).
3.P. Zhao, R. M. Feenstra, G. Gu, and D. Jena, “SymFET: A proposed symmetric graphene tunneling field-effect transistor,” IEEE Trans. Electron Devices 60(3), 951 (2013).
4.H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, “Graphene Barrister, a triode device with a gate-controlled Schottky barrier,” Science 336, 1140 (2012).
5.L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947 (2012).
6.L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, “Resonant tunneling and negative differential conductance in graphene transistors,” Nat. Commun. 4, 1794 (2013).
7.S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. MacDonald, “Bilayer pseudospin field-effect transistor (BiSFET): A proposed new logic device,” IEEE Electron Devcie Lett. 30, 158 (2009).
8.Z. Chen, D. Farmer, S. Xu, R. Gordon, P. Avouris, and J. Appenzeller, “Externally assembled gate-all-around carbon nanotube field-effect transistor,” IEEE Electron Device Lett. 29, 183 (2008).
9.S. V. Rotkin, V. Perebeinos, A. G. Petrov, and P. Avouris, “An essential mechanism of heat dissipation in carbon nanotube electronics,” Nano Lett. 9, 1850 (2009).
10.M. Asai, T. Ohba, T. Iwanaga, H. Kanoh, M. Endo, J. Campos-Delgado, M. Terrones, K. Nakai, and K. Kaneko, “Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O,” J. Am. Chem. Soc. 133, 14880 (2011).
11.Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, “Graphene nanoribbon tunnel transistors,” IEEE Electron Device Lett. 29, 1344 (2008).
12.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, “Electronic and magnetic properties of nanographite ribbons,” Phys. Rev. B 59, 8271 (1999).
13.M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98, 206805 (2007).
14.C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, and D. Jena, “Quantum transport in graphene nanoribbons patterned by metal masks,” Appl. Phys. Lett. 96, 103109 (2010).
15.W. S. Hwang, K. Tahy, X. Li, H. G. Xing, A. C. Seabaugh, C. Y. Sung, and D. Jena, “Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene,” Appl. Phys. Lett. 100, 203107 (2012).
16.A. Behnam, A. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, “Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett. 12, 4424 (2012).
17.X. Wang and H. Dai, “Etching and narrowing of graphene from the edges,” Nat. Chem. 2, 661 (2010).
18.L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “Facile synthesis of high-quality graphene nanoribbons,” Nat. Nanotechnol. 5, 321 (2010).
19.T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose, and K. Suenaga, “Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nat. Nanotechnol. 6, 45 (2011).
20.X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Nat. Nanotechnol. 6, 563 (2011).
21.S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, and B. R. Appleton, “Drawing nanoribbons on SiC by ion implantation,” Appl. Phys. Lett. 100, 073501 (2012).
22.J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. Vanmil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale,” Nano Lett. 9, 28732876 (2009).
23.J. S. Moon, D. Curtis, S. Bui, M. Hu, D. K. Gaskill, J. L. Tedesco, P. Asbeck, G. G. Jernigan, B. L. Vanmil, R. L. Myers-Ward, C. R. Eddy, Jr., P. M. Campbell, and X. Weng, “Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm,” IEEE Electron Device Lett. 31, 260 (2010).
24.J. B. Chang, M. Guillorn, P. M. Solomon, C.-H. Lin, S. U. Engelmann, A. Pyzyna, J. A. Ott, and W. E. Haensch, “Scaling of SOI FinFETs down to Fin width of 4 nm for the 10 nm technology node,” VLSI Technology (IEEE, 2011), pp. 1213.
25.H. Kawasaki, V. S. Basker, T. Yamashita, C.-H. Lin, Y. Zhu, J. Faltermeier, S. Schmitz, J. Cummings, S. Kanakasabapathy, H. Adhikari, H. Jagannathan, A. Kumar, K. Maitra, J. Wang, C.-C. Yeh, C. Wang, M. Khater, M. Guillorn, N. Fuller, J. Chang, L. Chang, R. Muralidhar, A. Yagishita, R. Miller, Q. Ouyang, Y. Zhang, V. K. Paruchuri, H. Bu, B. Doris, M. Takayanagi, W. Haensch, D. Mcherron, J. O’neill, and K. Ishimaru, “Challenges and solutions of FinFET integration in an SRAM cell and a logic circuit for 22 nm node and beyond,” IEEE International Electron Devices Meeting (IEEE, 2009), Vol. 12.
26.M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, “Scalable template growth of graphene nanoribbons on SiC,” Nat. Nanotechnol. 5, 727731 (2010).
27.F. Molitor, A. Jacobsen, C. Stampfer, J. Guttinger, T. Ihn, and K. Ensslin, “Transport gap in side-gated graphene constrictions,” Phys. Rev. B 79, 075426 (2009).
28.P. Gallagher, K. Todd, and D. Goldhaber-Gordon, “Disorder-induced gap behavior in graphene nanoribbons,” Phys. Rev. B 81, 115409 (2010).
29.K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-Gordon, “Quantum dot behavior in graphene nanoconstrictions,” Nano Lett. 9, 416421 (2009).
30.C. Stampfer, J. Guttinger, S. Hellmuller, F. Molitor, K. Ensslin, and T. Ihn, “Energy gaps in etched graphene nanoribbons,” Phys. Rev. Lett. 102, 056403 (2009).
31.M. Y. Han, J. C. Brant, and P. Kim, “Electron transport in disordered graphene nanoribbons,” Phys. Rev. Lett. 104, 056801 (2010).
32.A. Deshpande, W. Bao, F. Milao, C. N. Lau, and B. J. LeRoy, “Spatially resolved spectroscopy of monolayer graphene on SiO2,” Phys. Rev. B 79, 205411 (2009).
33.V. E. Dorgan, M.-H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Appl. Phys. Lett. 97, 082112 (2010).
34.W. S. Hwang, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, H. Xing, A. Seabaugh, and D. Jena, “Fabrication of top-gated epitaxial graphene nanoribbons FETs using hydrogen-silsesquioxane,” J. Vac. Sci. Technol. B 30, 03D104 (2012).
35.See supplementary material at for the details of the hybrid thermionic emission/tunneling transport model.[Supplementary Material]
36.M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766 (2007).
37.J. H. Chu, Z. Y. Mi, R. Sizmann, F. Koch, R. Wollrab, J. Ziegler, and H. Maier, “Influence of resonant defect states on subband structures in Hg1-xCdxTe,” J. Vac. Sci. Technol. B 10, 1569 (1992).
38.J. H. Chu, Z. Y. Mi, R. Sizmann, and F. Koch, “Subband structure in the electric quantum limit for Hg1−x Cdx Te,” Phys. Rev. B 44, 1717 (1991).
39.A. E. Curtin, M. S. Fuhrer, J. L. Tedesco, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, “Kelvin probe microscopy and electronic transport in graphene on SiC (0001) in the minimum conductivity regime,” Appl. Phys. Lett. 98, 243111 (2011).
40.B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots,” Nature 3, 192196 (2007).
41.H. A. Nilsson, P. Caroff, C. Thelander, E. Lind, O. Karlstrom, and L.-E. Wernersson, “Temperature dependent properties of InSb and InAs nanowire field-effect transistors,” Appl. Phys. Lett. 96, 153505 (2010).
42.K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, and M. Micovic, “Self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG,” IEEE International Electron Devices Meeting (IEEE, 2012), pp.
43.M. Ezawa, “Peculiar band gap structure of graphene nanoribbons,” Phys. Status Solidi (c) 4, 489 (2007).
44.Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006).
45.F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5, 487 (2010).
46.L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, “Quasiparticle energies and band gaps in graphene nanoribbons,” Phys. Rev. Lett. 99, 186801 (2007).

Data & Media loading...


Article metrics loading...



We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ∼10 nm width on large-area epitaxialgraphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanoribbons (GNRs), the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors and remain potential candidates for electronic switching devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd