Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/1/10.1063/1.4905155
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.P. M. Feenstra, D. Jena, and G. Gu, “Single-particle tunneling in doped graphene-insulator-graphene junctions,” J. Appl. Phys. 111, 043711 (2012).
http://dx.doi.org/10.1063/1.3686639
3.
3.P. Zhao, R. M. Feenstra, G. Gu, and D. Jena, “SymFET: A proposed symmetric graphene tunneling field-effect transistor,” IEEE Trans. Electron Devices 60(3), 951 (2013).
http://dx.doi.org/10.1109/ted.2013.2238238
4.
4.H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, “Graphene Barrister, a triode device with a gate-controlled Schottky barrier,” Science 336, 1140 (2012).
http://dx.doi.org/10.1126/science.1220527
5.
5.L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
6.
6.L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, “Resonant tunneling and negative differential conductance in graphene transistors,” Nat. Commun. 4, 1794 (2013).
http://dx.doi.org/10.1038/ncomms2817
7.
7.S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. MacDonald, “Bilayer pseudospin field-effect transistor (BiSFET): A proposed new logic device,” IEEE Electron Devcie Lett. 30, 158 (2009).
http://dx.doi.org/10.1109/LED.2008.2009362
8.
8.Z. Chen, D. Farmer, S. Xu, R. Gordon, P. Avouris, and J. Appenzeller, “Externally assembled gate-all-around carbon nanotube field-effect transistor,” IEEE Electron Device Lett. 29, 183 (2008).
http://dx.doi.org/10.1109/LED.2007.914069
9.
9.S. V. Rotkin, V. Perebeinos, A. G. Petrov, and P. Avouris, “An essential mechanism of heat dissipation in carbon nanotube electronics,” Nano Lett. 9, 1850 (2009).
http://dx.doi.org/10.1021/nl803835z
10.
10.M. Asai, T. Ohba, T. Iwanaga, H. Kanoh, M. Endo, J. Campos-Delgado, M. Terrones, K. Nakai, and K. Kaneko, “Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O,” J. Am. Chem. Soc. 133, 14880 (2011).
http://dx.doi.org/10.1021/ja205832z
11.
11.Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, “Graphene nanoribbon tunnel transistors,” IEEE Electron Device Lett. 29, 1344 (2008).
http://dx.doi.org/10.1109/LED.2008.2005650
12.
12.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, “Electronic and magnetic properties of nanographite ribbons,” Phys. Rev. B 59, 8271 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8271
13.
13.M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
14.
14.C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, and D. Jena, “Quantum transport in graphene nanoribbons patterned by metal masks,” Appl. Phys. Lett. 96, 103109 (2010).
http://dx.doi.org/10.1063/1.3352559
15.
15.W. S. Hwang, K. Tahy, X. Li, H. G. Xing, A. C. Seabaugh, C. Y. Sung, and D. Jena, “Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene,” Appl. Phys. Lett. 100, 203107 (2012).
http://dx.doi.org/10.1063/1.4716983
16.
16.A. Behnam, A. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, “Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett. 12, 4424 (2012).
http://dx.doi.org/10.1021/nl300584r
17.
17.X. Wang and H. Dai, “Etching and narrowing of graphene from the edges,” Nat. Chem. 2, 661 (2010).
http://dx.doi.org/10.1038/nchem.719
18.
18.L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “Facile synthesis of high-quality graphene nanoribbons,” Nat. Nanotechnol. 5, 321 (2010).
http://dx.doi.org/10.1038/nnano.2010.54
19.
19.T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose, and K. Suenaga, “Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nat. Nanotechnol. 6, 45 (2011).
http://dx.doi.org/10.1038/nnano.2010.249
20.
20.X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Nat. Nanotechnol. 6, 563 (2011).
http://dx.doi.org/10.1038/nnano.2011.138
21.
21.S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, and B. R. Appleton, “Drawing nanoribbons on SiC by ion implantation,” Appl. Phys. Lett. 100, 073501 (2012).
http://dx.doi.org/10.1063/1.3682479
22.
22.J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, B. L. Vanmil, G. G. Jernigan, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, “Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale,” Nano Lett. 9, 28732876 (2009).
http://dx.doi.org/10.1021/nl901073g
23.
23.J. S. Moon, D. Curtis, S. Bui, M. Hu, D. K. Gaskill, J. L. Tedesco, P. Asbeck, G. G. Jernigan, B. L. Vanmil, R. L. Myers-Ward, C. R. Eddy, Jr., P. M. Campbell, and X. Weng, “Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm,” IEEE Electron Device Lett. 31, 260 (2010).
http://dx.doi.org/10.1109/LED.2010.2040132
24.
24.J. B. Chang, M. Guillorn, P. M. Solomon, C.-H. Lin, S. U. Engelmann, A. Pyzyna, J. A. Ott, and W. E. Haensch, “Scaling of SOI FinFETs down to Fin width of 4 nm for the 10 nm technology node,” VLSI Technology (IEEE, 2011), pp. 1213.
25.
25.H. Kawasaki, V. S. Basker, T. Yamashita, C.-H. Lin, Y. Zhu, J. Faltermeier, S. Schmitz, J. Cummings, S. Kanakasabapathy, H. Adhikari, H. Jagannathan, A. Kumar, K. Maitra, J. Wang, C.-C. Yeh, C. Wang, M. Khater, M. Guillorn, N. Fuller, J. Chang, L. Chang, R. Muralidhar, A. Yagishita, R. Miller, Q. Ouyang, Y. Zhang, V. K. Paruchuri, H. Bu, B. Doris, M. Takayanagi, W. Haensch, D. Mcherron, J. O’neill, and K. Ishimaru, “Challenges and solutions of FinFET integration in an SRAM cell and a logic circuit for 22 nm node and beyond,” IEEE International Electron Devices Meeting (IEEE, 2009), Vol. 12.
26.
26.M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, “Scalable template growth of graphene nanoribbons on SiC,” Nat. Nanotechnol. 5, 727731 (2010).
http://dx.doi.org/10.1038/nnano.2010.192
27.
27.F. Molitor, A. Jacobsen, C. Stampfer, J. Guttinger, T. Ihn, and K. Ensslin, “Transport gap in side-gated graphene constrictions,” Phys. Rev. B 79, 075426 (2009).
http://dx.doi.org/10.1103/physrevb.79.075426
28.
28.P. Gallagher, K. Todd, and D. Goldhaber-Gordon, “Disorder-induced gap behavior in graphene nanoribbons,” Phys. Rev. B 81, 115409 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115409
29.
29.K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-Gordon, “Quantum dot behavior in graphene nanoconstrictions,” Nano Lett. 9, 416421 (2009).
http://dx.doi.org/10.1021/nl803291b
30.
30.C. Stampfer, J. Guttinger, S. Hellmuller, F. Molitor, K. Ensslin, and T. Ihn, “Energy gaps in etched graphene nanoribbons,” Phys. Rev. Lett. 102, 056403 (2009).
http://dx.doi.org/10.1103/physrevlett.102.056403
31.
31.M. Y. Han, J. C. Brant, and P. Kim, “Electron transport in disordered graphene nanoribbons,” Phys. Rev. Lett. 104, 056801 (2010).
http://dx.doi.org/10.1103/physrevlett.104.056801
32.
32.A. Deshpande, W. Bao, F. Milao, C. N. Lau, and B. J. LeRoy, “Spatially resolved spectroscopy of monolayer graphene on SiO2,” Phys. Rev. B 79, 205411 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205411
33.
33.V. E. Dorgan, M.-H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Appl. Phys. Lett. 97, 082112 (2010).
http://dx.doi.org/10.1063/1.3483130
34.
34.W. S. Hwang, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, H. Xing, A. Seabaugh, and D. Jena, “Fabrication of top-gated epitaxial graphene nanoribbons FETs using hydrogen-silsesquioxane,” J. Vac. Sci. Technol. B 30, 03D104 (2012).
http://dx.doi.org/10.1116/1.3693593
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4905155 for the details of the hybrid thermionic emission/tunneling transport model.[Supplementary Material]
36.
36.M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in HgTe quantum wells,” Science 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
37.
37.J. H. Chu, Z. Y. Mi, R. Sizmann, F. Koch, R. Wollrab, J. Ziegler, and H. Maier, “Influence of resonant defect states on subband structures in Hg1-xCdxTe,” J. Vac. Sci. Technol. B 10, 1569 (1992).
http://dx.doi.org/10.1116/1.586250
38.
38.J. H. Chu, Z. Y. Mi, R. Sizmann, and F. Koch, “Subband structure in the electric quantum limit for Hg1−x Cdx Te,” Phys. Rev. B 44, 1717 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.1717
39.
39.A. E. Curtin, M. S. Fuhrer, J. L. Tedesco, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, “Kelvin probe microscopy and electronic transport in graphene on SiC (0001) in the minimum conductivity regime,” Appl. Phys. Lett. 98, 243111 (2011).
http://dx.doi.org/10.1063/1.3595360
40.
40.B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots,” Nature 3, 192196 (2007).
http://dx.doi.org/10.1038/nphys544
41.
41.H. A. Nilsson, P. Caroff, C. Thelander, E. Lind, O. Karlstrom, and L.-E. Wernersson, “Temperature dependent properties of InSb and InAs nanowire field-effect transistors,” Appl. Phys. Lett. 96, 153505 (2010).
http://dx.doi.org/10.1063/1.3402760
42.
42.K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, and M. Micovic, “Self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG,” IEEE International Electron Devices Meeting (IEEE, 2012), pp. 27.2.227.2.4.
43.
43.M. Ezawa, “Peculiar band gap structure of graphene nanoribbons,” Phys. Status Solidi (c) 4, 489 (2007).
http://dx.doi.org/10.1002/pssc.200673205
44.
44.Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/physrevlett.97.216803
45.
45.F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
46.
46.L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, “Quasiparticle energies and band gaps in graphene nanoribbons,” Phys. Rev. Lett. 99, 186801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.186801
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/1/10.1063/1.4905155
Loading
/content/aip/journal/aplmater/3/1/10.1063/1.4905155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/1/10.1063/1.4905155
2015-01-05
2016-09-25

Abstract

We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ∼10 nm width on large-area epitaxialgraphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanoribbons (GNRs), the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors and remain potential candidates for electronic switching devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/1/1.4905155.html;jsessionid=Voe8F7wcOKLHlxs2wBc2bSos.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/1/10.1063/1.4905155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/1/10.1063/1.4905155&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4905155'
Top,Right1,Right2,Right3,