Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. S. Stacks, R. M. Califf, H. R. Phillips, D. B. Pryor, P. J. Quigley, R. P. Bauman, J. E. Tcheng, and J. C. Greenfield, Am. J. Cardiol. 61(10), 3F (1988).
2.H. Tamai, K. Ihaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Circulation 102, 399 (2000).
3.G. R. D. Evans, K. Brandt, A. D. Niederbichler, P. Chauvin, S. Hermann, M. Bogle, L. Otta, B. Wang, and C. W. Patrick, J. Biomater. Sci. 11(8), 869 (2000).
4.H. S. Koh, T. Yong, W. E. Teo, C. K. Chan, M. E. Puhaindran, T. C. Tan, A. Lim, B. H. Lim, and S. Ramakrishna, J. Neural Eng. 7, 14 (2010).
5.K. Ye, R. Felimban, K. Traianedes, S. E. Moulton, G. G. Wallace, J. Chung, A. Quigley, P. F. M. Choong, and D. E. Myers, PLoS One 9(6), e99410 (2014).
6.Y.-C. Fu, H. Nie, M.-L. Ho, C.-K. Wang, and C.-H. Wang, Biotechnol. Bioeng. 99(4), 996 (2008).
7.C. V. Rahman, D. Ben-Daid, A. Dhillon, G. Kuhn, T. W. A. Gould, R. Muller, F. R. A. J. Rose, K. M. Shakesheff, and E. Livne, J. Tissue Eng. Regener. Med. 8(1), 59 (2014).
8.V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, Biofabrication 3, 12 (2011).
9.G. M. Clark and R. J. Hallworth, J. Laryngol. Otol. 90(7), 623 (1976).
10.T. L. Rose and L. S. Robblee, IEEE Trans. Biomed. Eng. 37, 1118 (1990).
11.A. Norlin, J. Pan, and C. Leygraf, J. Electrochem. Soc. 152(2), J7 (2005).
12.X. Beebe and T. L. Rose, IEEE Trans. Biomed. Eng. 35, 494 (1988).
13.J. D. Weiland, D. J. Anderson, and M. S. Humayun, IEEE Trans. Biomed. Eng. 49(12), 1574 (2002).
14.G. G. Wallace, S. E. Moulton, R. M. I. Kapsa, and M. J. Higgins, Organic Bionics (Wiley-VCH, Wienheim, 2012), p. 238.
15.R. J. Zdrahala and I. J. Zdrahala, J. Biomater. Appl. 14(1), 67 (1999).
16.A. Mata, A. J. Fleischman, and S. Roy, Biomed. Microdevices 7(4), 281 (2005).
17.G. S. Pande, Pacing Clin. Electrophysiol. 5(1), 858 (1983).
18.V. Barbaro, C. Bosi, S. Caiazza, P. Chistolino, D. Ialongo, and P. Rosa, Biomaterials 6, 28 (1985).
19.T. Stover and T. Lenarz, GMS Curr. Top Otorhinolaryngol. Head Neck Surg. 8, 22 (2009).
20.A. Simmons, A. D. Padsalgikar, L. M. Ferris, and L. A. Poole-Warren, Biomaterials 29, 2987 (2008).
21.F. F. Ghavi, H. Mirzadeh, M. Imani, C. Jolly, and M. Farhadi, J. Biomed. Mater. Res. Part B 94B(2), 388 (2010).
22.S. A. Guelcher, Tissue Eng Part B 14(1), 3 (2008). 0133
23.J. Kucinska-Lipka, I. Gubanska, H. Janik, and M. Sienkiewicz, Mater. Sci. Eng. C 46, 166 (2015).
24.C. R. Correia, L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano, Tissue Eng., Part C 17(7), 717 (2011).
25.S. Mollers, I. Heschel, L. H. H. Olde Damink, F. Schugner, R. Deumens, B. Muller, A. Bozkurt, J. G. Nava, J. Noth, and G. A. Brook, Tissue Eng., Part A 15(3), 461 (2009).
26.H. J. Kong, M. K. Smith, and D. J. Mooney, Biomaterials 24, 4023 (2003).
27.J. L. Drury, R. G. Dennis, and D. J. Mooney, Biomaterials 25, 3187 (2004).
28.Z. Li and M. Zhang, J. Biomed. Mater. Res. A 75A(2), 485 (2005).
29.R. Jin, L. S. Moreira Teixeira, P. J. Dijkstra, M. Karperien, C. A. van Blitterswijk, Z. Y. Zhong, and J. Feijen, Biomaterials 30, 2544 (2009).
30.M. P. Ribeiro, A. Espiga, D. Silva, P. Baptista, J. Henriques, C. Ferreira, J. C. Silva, J. P. Borges, E. Pires, P. Chaves, and I. J. Correia, Wound Repair Regener. 17(6), 817 (2009).
31.Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo, and F. Z. Cui, Acta Biomater. 6, 372 (2010).
32.Y. Suzuki, M. Tanihara, K. Ohnishi, K. Suzuki, K. Endo, and Y. Nishimura, Neurosci. Lett. 259, 75 (1999).
33.Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, Biomaterials 26, 3919 (2005).
34.Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, Biomaterials 29, 4314 (2008).
35.N. O. Dhoot, C. A. Tobias, I. Fischer, and M. A. Wheatley, J. Biomed. Mat. Res. 71A(2), 191 (2004).
36.S.-H. Hsu, S. W. Whu, S.-C. Hsieh, C.-L. Tsai, D. C. Chen, and T.-S. Tan, Artif. Organs 28(8), 693 (2004).
37.Y.-C. Huang, C.-C. Huang, Y.-Y. Huang, and K.-S. Chen, J. Biomed. Mater. Res., Part A 82A(4), 842 (2007).
38.T. Alexakis, D. K. Boadi, D. Quong, A. Groboillot, I. O’Neill, D. Poncelet, and R. J. Neufield, Appl. Biochem. Biotechnol. 50, 93 (1995).
39.D.-H. Kim and D. C. Martin, Biomaterials 27, 3031 (2006).
40.A. M. Puga, A. Rey-Rico, B. Magarinos, C. Alvarez-Lorenzo, and A. Concheiro, Acta Biomater. 8, 1507 (2012).
41.E. Sachlos and J. T. Czernuszka, Eur. Cells Mater. 5, 29 (2003).
42.B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Int. J. Polym. Sci. 19 (2011).
43.W. Zhu, C. O’Brien, J. O’Brien, and L. G. Zhang, Nanomedicine 9(6), 859 (2014).
44.M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, Nature 389, 582 (1997).
45.A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. B. Treacy, phys rev 58, 14013 (1998).
46.J. H. Kim, K.-W. Nam, S. B. Ma, and K. B. Kim, Carbon 44, 1963 (2006).
47.L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, and J. Li, Adv. Funct. Mater. 19, 2782 (2009).
48.R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett. 84, 2928 (2003).
49.C.-S. Lee, S. E. Baker, M. S. Marcus, W. Yang, M. A. Eriksson, and R. J. Hamers, Nano Lett. 4(9), 1713 (2004).
50.H. Hu, Y. Ni, V. Montana, R. C. Haddon, and V. Parpura, Nano Lett. 4(3), 507 (2004).
51.C. X. Guo, S. R. Ng, S. Y. Khoo, X. Zheng, P. Chen, and C. M. Li, ACS Nano 6(8), 6944 (2012).
52.P. Galvan-Garcia, E. W. Keefer, F. Yang, M. Zhang, S. Fang, and A. A. Zakhidov, J. Biomater. Sci., Polym. Ed. 18(10), 1245 (2007).
53.A. F. Quigley, J. M. Razal, B. C. Thompson, S. E. Moulton, M. Kita, E. L. Kennedy, G. M. Clark, G. G. Wallace, and R. M. I. Kapsa, Adv. Mater. 21, 4393 (2009).
54.J. A. Kim, E. Y. Jang, T. J. Kang, S. Yoon, R. Ovalle-Robles, W. J. Rhee, T. Kim, R. H. Baughman, Y. H. Kim, and T. H. Park, Integr. Biol. 4, 587 (2012).
55.C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, Toxicol. Sci. 77, 126 (2004).
56.D. A. X. Nayagam, R. A. Williams, J. Chen, K. A. Magee, J. Irwin, J. Tan, P. Inis, R. T. Leung, S. Finch, C. E. Williams, G. M. Clark, and G. G. Wallace, Small 7(8), 1035 (2011).
57.R. T. Richardson, B. Thompson, S. Moulton, C. Newbold, M. G. Lum, and A. Cameron, Biomaterials 28(3), 513 (2007).
58.C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, Proc. Natl. Acad. Sci. U. S. A. 94(17), 8948 (1997).
59.A. Gelmi, M. J. Higgins, and G.G. Wallace, Biomaterials 31, 1974 (2010).
60.B. Weng, R. Shepherd, and G. G. Wallace, Synth. Met. 162, 1375 (2012).
61.C. A. Mire, A. Agrawal, G. G. Wallace, P. Calvert, and M. in het Panhuis, J. Mater. Chem. 21, 2671 (2011).
62.A. Giuseppe-Elie, Biomaterials 31, 2701 (2010).
63.D.-H. Kim, J. A. Wiler, D. J. Anderson, D. R. Kipke, and D. C. Martin, Acta Biomater. 6, 57 (2010).
64.D.-H. Kim, M. Abidian, and D. C. Martin, J. Biomed. Mater. Res., Part A 71(4), 577 (2004).
65.L. M. Lira, S. I. Cordoba, and C. Torresi, Electrochem. Commun. 7, 717 (2005).
66.C. Dispenza, M.-A. Sabatino, A. Niconov, D. Chmielewska, and G. Spadaro, Radiat. Phys. Chem. 81, 1456 (2012).
67.M. R. Abidian, D.-H. Kim, and D. C. Martin, Adv. Mater. 18, 405 (2006).
68.J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Biomaterials 30, 4325 (2009).
69.T. Sudwilai, J. J. Ng, C. Boonkrai, N. Israsena, S. Chuangchote, and P. Supaphol, J. Biomater. Sci. 25(2), 1240 (2014).
70.X. Liu, J. Chen, K. J. Gilmore, M. J. Higgins, Y. Liu, and G. G. Wallace, J. Biomed. Mat. Res., Part A 94A(4), 1004 (2010).
71.I. S. Chronakis, S. Grapenson, and A. Jakob, Polymer 47, 1597 (2006).
72.M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27, 2705 (2006).
73.R. D. Breukers, K. J. Gilmore, M. Kita, K. K. Wagner, M. J. Higgins, S. E. Moulton, G. M. Clark, D. L. Officer, R. M. I. Kapsa, and G. G. Wallace, J. Biomed. Mat. Res., Part A 95A(1), 256 (2010).
74.T. Sudwilai, J. J. Ng, C. Boonkrai, N. Israsena, S. Chuangchote, and P. Supaphol, J. Biomater. Sci. 25(12), 1240 (2014).
75.J. Foroughi, G. M. Spinks, and G. G. Wallace, J. Mater. Chem. 21, 6421 (2011).
76.J. M. Razal, M. Kita, A. F. Quigley, E. Kennedy, S. E. Moulton, R. M. I. Kapsa, G. M. Clark, and G. G. Wallace, Adv. Funct. Mater. 19, 3381 (2009).
77.N. K. Guimard, N. Gomez, and C. E. Schmidt, Prog. Polym. Sci. 32, 876 (2007).
78.X. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, and D. C. Martin, J. Biomed. Mater. Res. 56(2), 261 (2001).;2-I
79.W. R. Stauffer and X. T. Cui, Biomaterials 27, 2405 (2006).
80.X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, and D. C. Martin, Biomaterials 24, 777 (2003).
81.J. H. Collier, J. P. Camp, T. W. Hudson, and C. E. Schmidt, J. Biomed. Mater. Res. 50(4), 574 (2000).;2-I
82.J. S. Moreno, S. Panero, M. Artico, and P. Filippini, Bioelectrochemistry 72, 3 (2008).
83.K. G. Gilmore, M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. M. I. Kapsa, and G. G. Wallace, Biomaterials 30, 5292 (2009).
84.M. Asplund, H. von Holst, and O. Inganas, Biointerphases 3(3), 83 (2008). 2998407
85.A. M. D. Wan, D. J. Brooks, A. Gumus, C. Fischbach, and G. G. Malliaras, Chem. Commun. 5278 (2009).
86.A. Gumus, J. P. Califano, A. M. D. Wan, J. Huynh, C. A. Reinhart-King, and G. G. Malliaras, Soft Matter 6, 5138 (2010).
87.P. J. Molino, M. J. Higgins, P. C. Innis, R. M. I. Kapsa, and G. G. Wallace, Langmuir 28, 8433 (2012). 1021/la300692y
88.P. J. Molino, Z. Yue, B. Zhang, A. Tibbens, X. Liu, R. M. I. Kapsa, M. J. Higgins, and G. G. Wallace, Adv. Mater. Interfaces 1(3), 12 (2014).
89.S. Y. Yang, B. N. Kim, A. A. Zakhidov, P. G. Taylor, J.-K. Lee, C. K. Ober, M. Lindau, and G. G. Malliaras, Adv. Healthcare Mater. 23, 4 (2011).
90.R. M. Owens and G. G. Malliaras, MRS Bull. 35, 449 (2010).
91.P. Lin, F. Yan, J. Yu, H. L. W. Chan, and M. Yang, Adv. Mater. 22, 3655 (2010).
92.D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leluex, T. Herve, S. Sanaur, C. Bernard, and G. G. Malliaras, Adv. Healthcare Mater. 23, 4 (2011).
93.D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Herve, S. Sanaur, C. Bernard, and G. G. Malliaras, Nat. Commun. 4, 1575 (2013).
94.J. Isaksson, P. Kjall, D. Nilsson, N. D. Robinson, M. Berggren, and A. Richter-Dahlfors, Nat. Mater. 6, 673 (2007).
95.D. T. Simon, S. Kurup, K. C. Larsson, R. Hori, K. Tybrandt, M. Goiny, E. W. H. Jager, M. Berggren, B. Canlon, and A. Richter-Dahlfors, Nat. Mater. 8, 742 (2009).
96.D. Mawad, K. Gilmore, P. J. Molino, K. Wagner, P. Wagner, D. L. Officer, and G. G. Wallace, J. Mater. Chem. 21, 5555 (2011).
97.Y. Zhang, T. R. Nayak, H. Hong, and W. Cai, Nanoscale 4, 3833 (2012).
98.D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucus, D. A. Coulter, E. Cubukcu, and B. Litt, Nat. Commun. 5, 5259 (2014).
99.L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, and Y. Liu, J. Mater. Chem. 21, 10399 (2011).
100.Y. Wan, X. Chen, G. Xiong, R. Guo, and H. Luo, Mater. Exp. 4(5), 429 (2014).
101.S. Sayyar, E. Murray, B. C. Thompson, S. Gambhir, and D. L. Officer, Carbon 52, 296 (2013).
102.G. G. Wallace, R. C. Cornock, C. D. O’Connell, S. Beirne, S. M. Dodds, and F. Gilbert, 3D Bioprinting: Printing Parts for Bodies, ARC Centre of Excellence for Electromaterials Science, Australia, 2014.

Data & Media loading...


Article metrics loading...



Organic bioelectronics is making an enormous impact in the field of tissue engineering, providing not just biocompatible, but biofunctional conducting material platforms. For their true potential to be reached, it is critical to integrate organic conductors with other biopolymers in a targeted manner, allowing the development of devices and scaffold architectures capable of delivering a number of physical, chemical, and electrical stimuli. Herein, we provide an overview of the methods currently being employed to tailor organic conductors for bioapplications, with a focus on the development of fabrication techniques vital to the development of the next generation of intelligent bionic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd