Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/1/10.1063/1.4905372
1.
1.R. S. Stacks, R. M. Califf, H. R. Phillips, D. B. Pryor, P. J. Quigley, R. P. Bauman, J. E. Tcheng, and J. C. Greenfield, Am. J. Cardiol. 61(10), 3F (1988).
2.
2.H. Tamai, K. Ihaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Circulation 102, 399 (2000).
http://dx.doi.org/10.1161/01.CIR.102.4.399
3.
3.G. R. D. Evans, K. Brandt, A. D. Niederbichler, P. Chauvin, S. Hermann, M. Bogle, L. Otta, B. Wang, and C. W. Patrick, J. Biomater. Sci. 11(8), 869 (2000).
http://dx.doi.org/10.1163/156856200744066
4.
4.H. S. Koh, T. Yong, W. E. Teo, C. K. Chan, M. E. Puhaindran, T. C. Tan, A. Lim, B. H. Lim, and S. Ramakrishna, J. Neural Eng. 7, 14 (2010).
http://dx.doi.org/10.1088/1741-2560/7/4/046003
5.
5.K. Ye, R. Felimban, K. Traianedes, S. E. Moulton, G. G. Wallace, J. Chung, A. Quigley, P. F. M. Choong, and D. E. Myers, PLoS One 9(6), e99410 (2014).
http://dx.doi.org/10.1371/journal.pone.0099410
6.
6.Y.-C. Fu, H. Nie, M.-L. Ho, C.-K. Wang, and C.-H. Wang, Biotechnol. Bioeng. 99(4), 996 (2008).
http://dx.doi.org/10.1002/bit.21648
7.
7.C. V. Rahman, D. Ben-Daid, A. Dhillon, G. Kuhn, T. W. A. Gould, R. Muller, F. R. A. J. Rose, K. M. Shakesheff, and E. Livne, J. Tissue Eng. Regener. Med. 8(1), 59 (2014).
http://dx.doi.org/10.1002/term.1497
8.
8.V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, Biofabrication 3, 12 (2011).
http://dx.doi.org/10.1088/1758-5082/3/4/045005
9.
9.G. M. Clark and R. J. Hallworth, J. Laryngol. Otol. 90(7), 623 (1976).
http://dx.doi.org/10.1017/s0022215100082529
10.
10.T. L. Rose and L. S. Robblee, IEEE Trans. Biomed. Eng. 37, 1118 (1990).
http://dx.doi.org/10.1109/10.61038
11.
11.A. Norlin, J. Pan, and C. Leygraf, J. Electrochem. Soc. 152(2), J7 (2005).
http://dx.doi.org/10.1149/1.1842092
12.
12.X. Beebe and T. L. Rose, IEEE Trans. Biomed. Eng. 35, 494 (1988).
http://dx.doi.org/10.1109/10.2122
13.
13.J. D. Weiland, D. J. Anderson, and M. S. Humayun, IEEE Trans. Biomed. Eng. 49(12), 1574 (2002).
http://dx.doi.org/10.1109/tbme.2002.805487
14.
14.G. G. Wallace, S. E. Moulton, R. M. I. Kapsa, and M. J. Higgins, Organic Bionics (Wiley-VCH, Wienheim, 2012), p. 238.
15.
15.R. J. Zdrahala and I. J. Zdrahala, J. Biomater. Appl. 14(1), 67 (1999).
http://dx.doi.org/10.1177/088532829901400104
16.
16.A. Mata, A. J. Fleischman, and S. Roy, Biomed. Microdevices 7(4), 281 (2005).
http://dx.doi.org/10.1007/s10544-005-6070-2
17.
17.G. S. Pande, Pacing Clin. Electrophysiol. 5(1), 858 (1983).
http://dx.doi.org/10.1111/j.1540-8159.1983.tb04406.x
18.
18.V. Barbaro, C. Bosi, S. Caiazza, P. Chistolino, D. Ialongo, and P. Rosa, Biomaterials 6, 28 (1985).
http://dx.doi.org/10.1016/0142-9612(85)90034-1
19.
19.T. Stover and T. Lenarz, GMS Curr. Top Otorhinolaryngol. Head Neck Surg. 8, 22 (2009).
http://dx.doi.org/10.3205/cto000062
20.
20.A. Simmons, A. D. Padsalgikar, L. M. Ferris, and L. A. Poole-Warren, Biomaterials 29, 2987 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.04.007
21.
21.F. F. Ghavi, H. Mirzadeh, M. Imani, C. Jolly, and M. Farhadi, J. Biomed. Mater. Res. Part B 94B(2), 388 (2010).
http://dx.doi.org/10.1002/jbm.b.31666
22.
22.S. A. Guelcher, Tissue Eng Part B 14(1), 3 (2008).
http://dx.doi.org/10.1089/teb.2007. 0133
23.
23.J. Kucinska-Lipka, I. Gubanska, H. Janik, and M. Sienkiewicz, Mater. Sci. Eng. C 46, 166 (2015).
http://dx.doi.org/10.1016/j.msec.2014.10.027
24.
24.C. R. Correia, L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano, Tissue Eng., Part C 17(7), 717 (2011).
http://dx.doi.org/10.1089/ten.tec.2010.0467
25.
25.S. Mollers, I. Heschel, L. H. H. Olde Damink, F. Schugner, R. Deumens, B. Muller, A. Bozkurt, J. G. Nava, J. Noth, and G. A. Brook, Tissue Eng., Part A 15(3), 461 (2009).
http://dx.doi.org/10.1089/ten.tea.2007.0107
26.
26.H. J. Kong, M. K. Smith, and D. J. Mooney, Biomaterials 24, 4023 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00295-3
27.
27.J. L. Drury, R. G. Dennis, and D. J. Mooney, Biomaterials 25, 3187 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2003.10.002
28.
28.Z. Li and M. Zhang, J. Biomed. Mater. Res. A 75A(2), 485 (2005).
http://dx.doi.org/10.1002/jbm.a.30449
29.
29.R. Jin, L. S. Moreira Teixeira, P. J. Dijkstra, M. Karperien, C. A. van Blitterswijk, Z. Y. Zhong, and J. Feijen, Biomaterials 30, 2544 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.01.020
30.
30.M. P. Ribeiro, A. Espiga, D. Silva, P. Baptista, J. Henriques, C. Ferreira, J. C. Silva, J. P. Borges, E. Pires, P. Chaves, and I. J. Correia, Wound Repair Regener. 17(6), 817 (2009).
http://dx.doi.org/10.1111/j.1524-475X.2009.00538.x
31.
31.Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo, and F. Z. Cui, Acta Biomater. 6, 372 (2010).
http://dx.doi.org/10.1016/j.actbio.2009.07.024
32.
32.Y. Suzuki, M. Tanihara, K. Ohnishi, K. Suzuki, K. Endo, and Y. Nishimura, Neurosci. Lett. 259, 75 (1999).
http://dx.doi.org/10.1016/S0304-3940(98)00924-0
33.
33.Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, Biomaterials 26, 3919 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.09.062
34.
34.Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, Biomaterials 29, 4314 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.07.038
35.
35.N. O. Dhoot, C. A. Tobias, I. Fischer, and M. A. Wheatley, J. Biomed. Mat. Res. 71A(2), 191 (2004).
http://dx.doi.org/10.1002/jbm.a.30103
36.
36.S.-H. Hsu, S. W. Whu, S.-C. Hsieh, C.-L. Tsai, D. C. Chen, and T.-S. Tan, Artif. Organs 28(8), 693 (2004).
http://dx.doi.org/10.1111/j.1525-1594.2004.00046.x
37.
37.Y.-C. Huang, C.-C. Huang, Y.-Y. Huang, and K.-S. Chen, J. Biomed. Mater. Res., Part A 82A(4), 842 (2007).
http://dx.doi.org/10.1002/jbm.a.31036
38.
38.T. Alexakis, D. K. Boadi, D. Quong, A. Groboillot, I. O’Neill, D. Poncelet, and R. J. Neufield, Appl. Biochem. Biotechnol. 50, 93 (1995).
http://dx.doi.org/10.1007/BF02788043
39.
39.D.-H. Kim and D. C. Martin, Biomaterials 27, 3031 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.12.021
40.
40.A. M. Puga, A. Rey-Rico, B. Magarinos, C. Alvarez-Lorenzo, and A. Concheiro, Acta Biomater. 8, 1507 (2012).
http://dx.doi.org/10.1016/j.actbio.2011.12.020
41.
41.E. Sachlos and J. T. Czernuszka, Eur. Cells Mater. 5, 29 (2003).
42.
42.B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Int. J. Polym. Sci. 19 (2011).
http://dx.doi.org/10.1155/2011/290602
43.
43.W. Zhu, C. O’Brien, J. O’Brien, and L. G. Zhang, Nanomedicine 9(6), 859 (2014).
http://dx.doi.org/10.2217/nnm.14.36
44.
44.M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, Nature 389, 582 (1997).
http://dx.doi.org/10.1038/39282
45.
45.A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. B. Treacy, phys rev 58, 14013 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14013
46.
46.J. H. Kim, K.-W. Nam, S. B. Ma, and K. B. Kim, Carbon 44, 1963 (2006).
http://dx.doi.org/10.1016/j.carbon.2006.02.002
47.
47.L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, and J. Li, Adv. Funct. Mater. 19, 2782 (2009).
http://dx.doi.org/10.1002/adfm.200900377
48.
48.R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett. 84, 2928 (2003).
http://dx.doi.org/10.1063/1.1616976
49.
49.C.-S. Lee, S. E. Baker, M. S. Marcus, W. Yang, M. A. Eriksson, and R. J. Hamers, Nano Lett. 4(9), 1713 (2004).
http://dx.doi.org/10.1021/nl048995x
50.
50.H. Hu, Y. Ni, V. Montana, R. C. Haddon, and V. Parpura, Nano Lett. 4(3), 507 (2004).
http://dx.doi.org/10.1021/nl035193d
51.
51.C. X. Guo, S. R. Ng, S. Y. Khoo, X. Zheng, P. Chen, and C. M. Li, ACS Nano 6(8), 6944 (2012).
http://dx.doi.org/10.1021/nn301974u
52.
52.P. Galvan-Garcia, E. W. Keefer, F. Yang, M. Zhang, S. Fang, and A. A. Zakhidov, J. Biomater. Sci., Polym. Ed. 18(10), 1245 (2007).
http://dx.doi.org/10.1163/156856207782177891
53.
53.A. F. Quigley, J. M. Razal, B. C. Thompson, S. E. Moulton, M. Kita, E. L. Kennedy, G. M. Clark, G. G. Wallace, and R. M. I. Kapsa, Adv. Mater. 21, 4393 (2009).
http://dx.doi.org/10.1002/adma.200901165
54.
54.J. A. Kim, E. Y. Jang, T. J. Kang, S. Yoon, R. Ovalle-Robles, W. J. Rhee, T. Kim, R. H. Baughman, Y. H. Kim, and T. H. Park, Integr. Biol. 4, 587 (2012).
http://dx.doi.org/10.1039/c2ib20017a
55.
55.C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, Toxicol. Sci. 77, 126 (2004).
http://dx.doi.org/10.1093/toxsci/kfg243
56.
56.D. A. X. Nayagam, R. A. Williams, J. Chen, K. A. Magee, J. Irwin, J. Tan, P. Inis, R. T. Leung, S. Finch, C. E. Williams, G. M. Clark, and G. G. Wallace, Small 7(8), 1035 (2011).
http://dx.doi.org/10.1002/smll.201002083
57.
57.R. T. Richardson, B. Thompson, S. Moulton, C. Newbold, M. G. Lum, and A. Cameron, Biomaterials 28(3), 513 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2006.09.008
58.
58.C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, Proc. Natl. Acad. Sci. U. S. A. 94(17), 8948 (1997).
http://dx.doi.org/10.1073/pnas.94.17.8948
59.
59.A. Gelmi, M. J. Higgins, and G.G. Wallace, Biomaterials 31, 1974 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.11.040
60.
60.B. Weng, R. Shepherd, and G. G. Wallace, Synth. Met. 162, 1375 (2012).
http://dx.doi.org/10.1016/j.synthmet.2012.05.022
61.
61.C. A. Mire, A. Agrawal, G. G. Wallace, P. Calvert, and M. in het Panhuis, J. Mater. Chem. 21, 2671 (2011).
http://dx.doi.org/10.1039/c0jm03587d
62.
62.A. Giuseppe-Elie, Biomaterials 31, 2701 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.12.052
63.
63.D.-H. Kim, J. A. Wiler, D. J. Anderson, D. R. Kipke, and D. C. Martin, Acta Biomater. 6, 57 (2010).
http://dx.doi.org/10.1016/j.actbio.2009.07.034
64.
64.D.-H. Kim, M. Abidian, and D. C. Martin, J. Biomed. Mater. Res., Part A 71(4), 577 (2004).
http://dx.doi.org/10.1002/jbm.a.30124
65.
65.L. M. Lira, S. I. Cordoba, and C. Torresi, Electrochem. Commun. 7, 717 (2005).
http://dx.doi.org/10.1016/j.elecom.2005.04.027
66.
66.C. Dispenza, M.-A. Sabatino, A. Niconov, D. Chmielewska, and G. Spadaro, Radiat. Phys. Chem. 81, 1456 (2012).
http://dx.doi.org/10.1016/j.radphyschem.2011.11.043
67.
67.M. R. Abidian, D.-H. Kim, and D. C. Martin, Adv. Mater. 18, 405 (2006).
http://dx.doi.org/10.1002/adma.200501726
68.
68.J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Biomaterials 30, 4325 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.04.042
69.
69.T. Sudwilai, J. J. Ng, C. Boonkrai, N. Israsena, S. Chuangchote, and P. Supaphol, J. Biomater. Sci. 25(2), 1240 (2014).
http://dx.doi.org/10.1080/09205063.2014.926578
70.
70.X. Liu, J. Chen, K. J. Gilmore, M. J. Higgins, Y. Liu, and G. G. Wallace, J. Biomed. Mat. Res., Part A 94A(4), 1004 (2010).
http://dx.doi.org/10.1002/jbm.a.32675
71.
71.I. S. Chronakis, S. Grapenson, and A. Jakob, Polymer 47, 1597 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.01.032
72.
72.M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27, 2705 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.11.037
73.
73.R. D. Breukers, K. J. Gilmore, M. Kita, K. K. Wagner, M. J. Higgins, S. E. Moulton, G. M. Clark, D. L. Officer, R. M. I. Kapsa, and G. G. Wallace, J. Biomed. Mat. Res., Part A 95A(1), 256 (2010).
http://dx.doi.org/10.1002/jbm.a.32822
74.
74.T. Sudwilai, J. J. Ng, C. Boonkrai, N. Israsena, S. Chuangchote, and P. Supaphol, J. Biomater. Sci. 25(12), 1240 (2014).
http://dx.doi.org/10.1080/09205063.2014.926578
75.
75.J. Foroughi, G. M. Spinks, and G. G. Wallace, J. Mater. Chem. 21, 6421 (2011).
http://dx.doi.org/10.1039/c0jm04406g
76.
76.J. M. Razal, M. Kita, A. F. Quigley, E. Kennedy, S. E. Moulton, R. M. I. Kapsa, G. M. Clark, and G. G. Wallace, Adv. Funct. Mater. 19, 3381 (2009).
http://dx.doi.org/10.1002/adfm.200900464
77.
77.N. K. Guimard, N. Gomez, and C. E. Schmidt, Prog. Polym. Sci. 32, 876 (2007).
http://dx.doi.org/10.1016/j.progpolymsci.2007.05.012
78.
78.X. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, and D. C. Martin, J. Biomed. Mater. Res. 56(2), 261 (2001).
http://dx.doi.org/10.1002/1097-4636(200108)56:23.0.CO;2-I
79.
79.W. R. Stauffer and X. T. Cui, Biomaterials 27, 2405 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.10.024
80.
80.X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, and D. C. Martin, Biomaterials 24, 777 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00415-5
81.
81.J. H. Collier, J. P. Camp, T. W. Hudson, and C. E. Schmidt, J. Biomed. Mater. Res. 50(4), 574 (2000).
http://dx.doi.org/10.1002/(SICI)1097-4636(20000615)50:43.0.CO;2-I
82.
82.J. S. Moreno, S. Panero, M. Artico, and P. Filippini, Bioelectrochemistry 72, 3 (2008).
http://dx.doi.org/10.1016/j.bioelechem.2007.11.002
83.
83.K. G. Gilmore, M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. M. I. Kapsa, and G. G. Wallace, Biomaterials 30, 5292 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.06.059
84.
84.M. Asplund, H. von Holst, and O. Inganas, Biointerphases 3(3), 83 (2008).
http://dx.doi.org/10.1116/1. 2998407
85.
85.A. M. D. Wan, D. J. Brooks, A. Gumus, C. Fischbach, and G. G. Malliaras, Chem. Commun. 5278 (2009).
http://dx.doi.org/10.1039/b911130a
86.
86.A. Gumus, J. P. Califano, A. M. D. Wan, J. Huynh, C. A. Reinhart-King, and G. G. Malliaras, Soft Matter 6, 5138 (2010).
http://dx.doi.org/10.1039/b923064e
87.
87.P. J. Molino, M. J. Higgins, P. C. Innis, R. M. I. Kapsa, and G. G. Wallace, Langmuir 28, 8433 (2012).
http://dx.doi.org/10. 1021/la300692y
88.
88.P. J. Molino, Z. Yue, B. Zhang, A. Tibbens, X. Liu, R. M. I. Kapsa, M. J. Higgins, and G. G. Wallace, Adv. Mater. Interfaces 1(3), 12 (2014).
http://dx.doi.org/10.1002/admi.201300122
89.
89.S. Y. Yang, B. N. Kim, A. A. Zakhidov, P. G. Taylor, J.-K. Lee, C. K. Ober, M. Lindau, and G. G. Malliaras, Adv. Healthcare Mater. 23, 4 (2011).
http://dx.doi.org/10.1002/adma.201190042
90.
90.R. M. Owens and G. G. Malliaras, MRS Bull. 35, 449 (2010).
http://dx.doi.org/10.1557/mrs2010.583
91.
91.P. Lin, F. Yan, J. Yu, H. L. W. Chan, and M. Yang, Adv. Mater. 22, 3655 (2010).
http://dx.doi.org/10.1002/adma.201000971
92.
92.D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leluex, T. Herve, S. Sanaur, C. Bernard, and G. G. Malliaras, Adv. Healthcare Mater. 23, 4 (2011).
http://dx.doi.org/10.1002/adma.201190042
93.
93.D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Herve, S. Sanaur, C. Bernard, and G. G. Malliaras, Nat. Commun. 4, 1575 (2013).
http://dx.doi.org/10.1038/ncomms2573
94.
94.J. Isaksson, P. Kjall, D. Nilsson, N. D. Robinson, M. Berggren, and A. Richter-Dahlfors, Nat. Mater. 6, 673 (2007).
http://dx.doi.org/10.1038/nmat1963
95.
95.D. T. Simon, S. Kurup, K. C. Larsson, R. Hori, K. Tybrandt, M. Goiny, E. W. H. Jager, M. Berggren, B. Canlon, and A. Richter-Dahlfors, Nat. Mater. 8, 742 (2009).
http://dx.doi.org/10.1038/nmat2494
96.
96.D. Mawad, K. Gilmore, P. J. Molino, K. Wagner, P. Wagner, D. L. Officer, and G. G. Wallace, J. Mater. Chem. 21, 5555 (2011).
http://dx.doi.org/10.1039/c1jm10259a
97.
97.Y. Zhang, T. R. Nayak, H. Hong, and W. Cai, Nanoscale 4, 3833 (2012).
http://dx.doi.org/10.1039/c2nr31040f
98.
98.D. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, T. H. Lucus, D. A. Coulter, E. Cubukcu, and B. Litt, Nat. Commun. 5, 5259 (2014).
http://dx.doi.org/10.1038/ncomms6259
99.
99.L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, and Y. Liu, J. Mater. Chem. 21, 10399 (2011).
http://dx.doi.org/10.1039/c0jm04043f
100.
100.Y. Wan, X. Chen, G. Xiong, R. Guo, and H. Luo, Mater. Exp. 4(5), 429 (2014).
http://dx.doi.org/10.1166/mex.2014.1188
101.
101.S. Sayyar, E. Murray, B. C. Thompson, S. Gambhir, and D. L. Officer, Carbon 52, 296 (2013).
http://dx.doi.org/10.1016/j.carbon.2012.09.031
102.
102.G. G. Wallace, R. C. Cornock, C. D. O’Connell, S. Beirne, S. M. Dodds, and F. Gilbert, 3D Bioprinting: Printing Parts for Bodies, ARC Centre of Excellence for Electromaterials Science, Australia, 2014.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/1/10.1063/1.4905372
Loading
/content/aip/journal/aplmater/3/1/10.1063/1.4905372
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/1/10.1063/1.4905372
2015-01-09
2016-12-07

Abstract

Organic bioelectronics is making an enormous impact in the field of tissue engineering, providing not just biocompatible, but biofunctional conducting material platforms. For their true potential to be reached, it is critical to integrate organic conductors with other biopolymers in a targeted manner, allowing the development of devices and scaffold architectures capable of delivering a number of physical, chemical, and electrical stimuli. Herein, we provide an overview of the methods currently being employed to tailor organic conductors for bioapplications, with a focus on the development of fabrication techniques vital to the development of the next generation of intelligent bionic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/1/1.4905372.html;jsessionid=QSDc4jU4B0dPfHhM53ZjGwUb.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/1/10.1063/1.4905372&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/1/10.1063/1.4905372&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4905372'
Top,Right1,Right2,Right3,