Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/1/10.1063/1.4905488
1.
1.K. Chung, C.-H. Lee, and G.-C. Yi, Science 330, 655 (2010).
http://dx.doi.org/10.1126/science.1195403
2.
2.Y. J. Kim, J. H. Lee, and G.-C. Yi, Appl. Phys. Lett. 95, 213101 (2009).
http://dx.doi.org/10.1063/1.3266836
3.
3.J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, and W. I. Park, J. Phys. Chem. C 113, 19134 (2009).
http://dx.doi.org/10.1021/jp9078713
4.
4.Z. L. Wang and J. H. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
5.
5.H. Chang, Z. Sun, K. Y.-F. Ho, X. Tao, F. Yan, W.-M. Kwok, and Z. Zheng, Nanoscale 3, 258 (2011).
http://dx.doi.org/10.1039/c0nr00588f
6.
6.Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, Small 6, 307 (2010).
http://dx.doi.org/10.1002/smll.200901968
7.
7.W. I. Park, C.-H. Lee, J. M. Lee, N. J. Kim, and G.-C. Yi, Nanoscale 3, 3522 (2011).
http://dx.doi.org/10.1039/c1nr10370a
8.
8.R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, ACS Appl. Mater. Interfaces 6, 377 (2014).
http://dx.doi.org/10.1021/am404411c
9.
9.B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, ACS Nano 5, 4197 (2011).
http://dx.doi.org/10.1021/nn200942s
10.
10.Y. T. Kim, J. H. Han, B. H. Hong, and Y. U. Kwon, Adv. Mater. 22, 515 (2010).
http://dx.doi.org/10.1002/adma.200902736
11.
11.S. Sun, L. Gao, Y. Liu, and J. Sun, Appl. Phys. Lett. 98, 093112 (2011).
http://dx.doi.org/10.1063/1.3558732
12.
12.D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, and J. Liu, ACS Nano 3, 907 (2009).
http://dx.doi.org/10.1021/nn900150y
13.
13.V. Sallet, J. F. Rommeluere, A. Lusson, A. Riviere, S. Fusil, O. Gorochov, and R. Triboulet, Phys. Status Solidi B 229, 903 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<903::AID-PSSB903>3.0.CO;2-N
14.
14.H. Yoo, K. Chung, Y. S. Choi, C. S. Kang, K. H. Oh, M. Kim, and G.-C. Yi, Adv. Mater. 24, 515 (2012).
http://dx.doi.org/10.1002/adma.201103829
15.
15.X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).
http://dx.doi.org/10.1063/1.370744
16.
16.S. K. Hong, H. J. Ko, Y. Chen, and T. Yao, J. Cryst. Growth 209, 537 (2000).
http://dx.doi.org/10.1016/s0022-0248(99)00615-6
17.
17.J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, J. Appl. Phys. 84, 2597 (1998).
http://dx.doi.org/10.1063/1.368440
18.
18.K. Vanheusden, C. H. Seager, W. T. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
http://dx.doi.org/10.1063/1.116699
19.
19.F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Status Solidi B 226, R4 (2001).
http://dx.doi.org/10.1002/1521-3951(200107)226:13.0.CO;2-F
20.
20.H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., Part 1 42, 2241 (2003).
http://dx.doi.org/10.1143/JJAP.42.2241
21.
21.T. Gruber, C. Kirchner, and A. Waag, Phys. Status Solidi B 229, 841 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<841::aid-pssb841>3.3.co;2-a
22.
22.S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 91, 072101 (2007).
http://dx.doi.org/10.1063/1.2768917
23.
23.D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B 57, 12151 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12151
24.
24.A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
25.
25.P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
http://dx.doi.org/10.1016/s0038-1098(97)00216-0
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/1/10.1063/1.4905488
Loading
/content/aip/journal/aplmater/3/1/10.1063/1.4905488
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/1/10.1063/1.4905488
2015-01-07
2016-10-01

Abstract

We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm2 at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/1/1.4905488.html;jsessionid=8c7m2LoEV1AwJDOfwghje6rI.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/1/10.1063/1.4905488&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/1/10.1063/1.4905488&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4905488'
Top,Right1,Right2,Right3,