Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8, 506 (2014).
2.J.-G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
3.J. Fan, B. Jia, and M. Gu, Photonics Res. 2, 111 (2014).
4.P. P. Boix, K. Nonomura, N. Mathews, and S. G. Mhaisalkar, Mater. Today 17, 16 (2014). 002
5.H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
6.S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. Seok, Energy Environ. Sci. 7, 2614 (2014).
7.P. Gao, M. Grätzel, and K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
8.N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, Angew. Chem. Int. Ed. 53, 3151 (2014).
9.G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).
10.S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, Chem. Mater. 26, 1485 (2014).
11.T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, J. Phys. Chem. C. 118, 16458 (2014).
12.F. Hao, C. C. Stoumpos, D. H. Cao, P. H. Chang, and M. G. Kanatzidis, Nat. Photonics 8, 489 (2014).
13.Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayaze, J. Phys. Chem. Lett. 5, 1004 (2014).
14.H. J. J. Snaith, Phys. Chem. Lett. 4, 3623 (2013).
15.M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H. A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal, Appl. Phys. Lett. 105, 153502 (2014).
16.H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, J. Am. Chem. Soc. 136, 13818 (2014).
17.C. Wehrenfennig, G. E. Eperon, M. B. Johnston, and H. J. Snaith, Adv. Mater. 26, 1584 (2014).
18.J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
19.J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, Adv. Mater. 24, 4107 (2014).
20.S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, Energy Environ. Sci. 7, 399 (2014).
21.J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-G. Tuo, P. Chen, and T.-C. Wen, Adv. Mater. 25, 3727 (2013).
22.D. Liu and T. L. Kelley, Nat. Photonics 8, 133 (2014).
23.Q. Hu, C. Jiang, T. Liu, X. Que, R. Zhu, and Q. Gong, ACS Nano 8, 10161 (2014).
24.Y. Bai, I. Mora-Seró, F. D. Angelis, J. Bisquert, and P. Wang, Chem. Rev. 114, 10095 (2014).
25.P. Gao, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
26. F. D. Giacomo, S. Razza, F. Matteocci, A. D’Epifanio, S. Licoccia, T. M. Brown, and A. D. Carlo, J. Power Sources 251, 152 (2014);
26. Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, J. Mater. Chem. A. 2, 13827 (2014).
27.W. Yan, Y. Li, W. Sun, H. Peng, S. Ye, Z. Liu, Z. Bian, and C. Huang, RSC Adv. 4, 33039 (2014).
28.Z. Zhu, Y. Bai, H. K. H. Lee, C. Mu, T. Zhang, L. Zhang, J. Wang, H. Yan, S. K. So, and S. Yang, Adv. Funct. Mater. 24, 73577365 (2014).
29.H. Li, K. Fu, A. Hagfeldt, M. Grätzel, S. G. Mhaisalkar, and A. C. Grimsdale, Angew. Chem. 53, 4085 (2014).
30.A. Marrocchi, D. Lanari, A. Facchetti, and L. Vaccaro, Energy Environ. Sci. 5, 8457 (2012).
31.B. Conings, L. beaten, C. Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, Adv. Mater. 26, 2041 (2014).
32.A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, and D. G. Lidzey, Energy Environ. Sci. 7, 2944 (2014).
33.J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013). 1038/nature12340
34.Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).
35.Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
36.C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, Adv. Mater. 26, 6647 (2014).
37.M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
38.J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, Nat. Photonics 7, 486 (2013).

Data & Media loading...


Article metrics loading...



Photovoltaic devices with perovskite materials as light absorbing material were fabricated through sequential vapor deposition of lead iodide and methylammonium iodide with undoped poly3hexylthiophene (P3HT) as a hole transporting layer. The sequential vapor deposition process produced films and devices with the large grains and low defect densities, very small values of dark current, and high open circuit voltages. The thickness of the P3HT layer was a critical parameter for achieving high solar conversion efficiencies of 13.7%. The vapor deposition process also produced devices with a tight distribution of performance characteristics and very high open circuit voltages (0.99 V).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd