Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4921783
1.
1.H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Adv. Mater. 24, 229251 (2012).
http://dx.doi.org/10.1002/adma.201102752
2.
2.S. Ouyang and J. Ye, J. Am. Chem. Soc. 133, 77577763 (2011).
http://dx.doi.org/10.1021/ja110691t
3.
3.Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, J. Am. Chem. Soc. 133, 64906492 (2011).
http://dx.doi.org/10.1021/ja2002132
4.
4.J. S. Jang, H. G. Kim, and J. S. Lee, Catal. Today 185, 270277 (2012).
http://dx.doi.org/10.1016/j.cattod.2011.07.008
5.
5.J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Qiao, Chem. Soc. Rev. 43, 77877812 (2014).
http://dx.doi.org/10.1039/C3CS60425J
6.
6.S. Ouyang, H. Tong, N. Umezawa, J. Cao, P. Li, Y. Bi, Y. Zhang, and J. Ye, J. Am. Chem. Soc. 134, 19741977 (2012).
http://dx.doi.org/10.1021/ja210610h
7.
7.T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, and J. Feldmann, Nat. Mater. 13, 10131018 (2014).
http://dx.doi.org/10.1038/nmat4049
8.
8.H. Sheng, H. Ji, W. Ma, C. Chen, and J. Zhao, Angew. Chem., Int. Ed. 52, 96869690 (2013).
http://dx.doi.org/10.1002/anie.201304481
9.
9.A. Primo, A. Corma, and H. Garcia, Phys. Chem. Chem. Phys. 13, 886910 (2011).
http://dx.doi.org/10.1039/C0CP00917B
10.
10.L. Liu, P. Li, B. Adisak, S. Ouyang, N. Umezawa, J. Ye, R. Kodiyath, T. Tanabe, G. V. Ramesh, S. Ueda, and H. Abe, J. Mater. Chem. A 2, 98759882 (2014).
http://dx.doi.org/10.1039/c4ta01988a
11.
11.C. Wang and D. Astruc, Chem. Soc. Rev. 43, 71887216 (2014).
http://dx.doi.org/10.1039/C4CS00145A
12.
12.L. Liu, S. Ouyang, and J. Ye, Angew. Chem., Int. Ed. 52, 66896693 (2013).
http://dx.doi.org/10.1002/anie.201300239
13.
13.S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911921 (2011).
http://dx.doi.org/10.1038/nmat3151
14.
14.Z. Lou, Z. Wang, B. Huang, and Y. Dai, ChemCatChem 6, 24562476 (2014).
http://dx.doi.org/10.1002/cctc.201402261
15.
15.Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, and M.-H. Whangbo, J. Mater. Chem. 21, 90799087 (2011).
http://dx.doi.org/10.1039/c1jm10983a
16.
16.C. Clavero, Nat. Photonics 8, 95103 (2014).
http://dx.doi.org/10.1038/nphoton.2013.238
17.
17.H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, Phys. Rev. B 57, 1133411340 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.11334
18.
18.L. Du, A. Furube, K. Hara, R. Katoh, and M. Tachiya, J. Photochem. Photobiol., C 15, 2130 (2013).
http://dx.doi.org/10.1016/j.jphotochemrev.2012.11.001
19.
19.A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, J. Am. Chem. Soc. 129, 1485214853 (2007).
http://dx.doi.org/10.1021/ja076134v
20.
20.J. B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, and A. Bruckner, Angew. Chem., Int. Ed. 52, 1142011424 (2013).
http://dx.doi.org/10.1002/anie.201306504
21.
21.J. Q. Yan, G. J. Wu, N. J. Guan, and L. D. Li, Chem. Commun. 49, 1176711769 (2013).
http://dx.doi.org/10.1039/c3cc46832a
22.
22.Z. Zheng, T. Tachikawa, and T. Majima, J. Am. Chem. Soc. 136, 68706873 (2014).
http://dx.doi.org/10.1021/ja502704n
23.
23.C. Colbeau-Justin, M. Kunst, and D. Huguenin, J. Mater. Sci. 38, 24292437 (2003).
http://dx.doi.org/10.1023/A:1023905102094
24.
24.Y. Kwon, S. C. S. Lai, P. Rodriguez, and M. T. M. Koper, J. Am. Chem. Soc. 133, 69146917 (2011).
http://dx.doi.org/10.1021/ja200976j
25.
25.S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Öztürk, V. C. van Rees Vellinga, J. Koning, P. Rodriguez, and M. T. M. Koper, Catal. Today 154, 92104 (2010).
http://dx.doi.org/10.1016/j.cattod.2010.01. 060
26.
26.Y. Kwon, K. J. P. Schouten, and M. T. M. Koper, ChemCatChem 3, 11761185 (2011).
http://dx.doi.org/10.1002/cctc.201100023
27.
27.J. Hernández, J. Solla-Gullón, E. Herrero, A. Aldaz, and J. M. Feliu, Electrochim. Acta 52, 16621669 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.03.091
28.
28.B. Beden, I. Çetin, A. Kahyaoglu, D. Takky, and C. Lamy, J. Catal. 104, 3746 (1987).
http://dx.doi.org/10.1016/0021-9517(87)90334-4
29.
29.A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, and M. T. M. Koper, Electrochem. Commun. 13, 466469 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.02.022
30.
30.T. Sheng, W.-F. Lin, C. Hardacre, and P. Hu, J. Phys. Chem. C 118, 57625772 (2014).
http://dx.doi.org/10.1021/jp407978h
31.
31.Y. Xu and M. A. A. Schoonen, Am. Mineral. 85, 543556 (2000), available at: http://ammin.geoscienceworld.org/content/85/3-4/543.abstract.
32.
32.R. Van de krol, Y. Liang, and J. Schoonman, J. Mater. Chem. 18, 23112320 (2008).
http://dx.doi.org/10.1039/b718969a
33.
33.A. V. Puga, A. Forneli, H. García, and A. Corma, Adv. Funct. Mater. 24, 241248 (2014).
http://dx.doi.org/10.1002/adfm.201301907
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4921783 for detailed experimental methods and data.[Supplementary Material]
35.
35.V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 126, 49434950 (2004).
http://dx.doi.org/10.1021/ja0315199
36.
36.M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, J. Phys. Chem. B 101, 37063712 (1997).
http://dx.doi.org/10.1021/jp962922n
37.
37.K. Yamada, K. Miyajima, and F. Mafuné, J. Phys. Chem. C 111, 1124611251 (2007).
http://dx.doi.org/10.1021/jp0730747
38.
38.Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 127, 76327637 (2005).
http://dx.doi.org/10.1021/ja042192u
39.
39.D. B. Ingram and S. Linic, J. Am. Chem. Soc. 133, 52025205 (2011).
http://dx.doi.org/10.1021/ja200086g
40.
40.T. K. Townsend, N. D. Browning, and F. E. Osterloh, Energy Environ. Sci. 5, 95439550 (2012).
http://dx.doi.org/10.1039/c2ee22665k
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4921783
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4921783
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4921783
2015-05-27
2016-09-26

Abstract

A reaction environment modulation strategy was employed to promote the H production over plasmonic Au/semiconductor composites. It is shown that the fast consumption of the holes in plasmonic Au nanoparticles by methanol in alkaline reaction environment remarkably increases H generation rate under visible light. The photocatalytic reaction is mainly driven by the interband transition of plasmonic Au nanoparticles, and the apparent quantum efficiency of plasmon-assisted H production at pH 14 reaches 6% at 420 nm. The reaction environment control provides a simple and effective way for the highly efficient solar fuel production from biomass reforming through plasmonic photocatalysis in future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4921783.html;jsessionid=vqmvJ8pRMYHlgxyF6rzSeQ4V.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4921783&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4921783&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4921783'
Top,Right1,Right2,Right3,