Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4922833
1.
1.M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev. 95(1), 69 (1995).
http://dx.doi.org/10.1021/cr00033a004
2.
2.K. Maeda, J. Photochem. Photobiol., C 12(4), 237 (2011).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.07.001
3.
3.A. Kubacka, M. Fernandez-Garcia, and G. Colon, Chem. Rev. 112(3), 1555 (2012).
http://dx.doi.org/10.1021/cr100454n
4.
4.H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Adv. Mater. 24(2), 229 (2012).
http://dx.doi.org/10.1002/adma.201102752
5.
5.G. Li, Z. Yi, Y. Bai, W. Zhang, and H. Zhang, Dalton Trans. 41(34), 10194 (2012).
http://dx.doi.org/10.1039/c2dt30593c
6.
6.J. Shi and L. Guo, Prog. Nat. Sci.: Mater. Int. 22(6), 592 (2012).
http://dx.doi.org/10.1016/j.pnsc.2012.12.002
7.
7.A. Kudo and Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009).
http://dx.doi.org/10.1039/B800489G
8.
8.Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9(7), 559 (2010).
http://dx.doi.org/10.1038/nmat2780
9.
9.K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, Electrochem. Commun. 2(3), 207 (2000).
http://dx.doi.org/10.1016/S1388-2481(00)00006-0
10.
10.T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C 111(14), 5259 (2007).
http://dx.doi.org/10.1021/jp069005u
11.
11.K. Wu, Z. Chen, H. Lv, H. Zhu, C. L. Hill, and T. Lian, J. Am. Chem. Soc. 136(21), 7708 (2014).
http://dx.doi.org/10.1021/ja5023893
12.
12.D. Wang, J. K. Baral, H. Zhao, Vo-V. Truong, B. A. Gonfa, My A. E. Khakani, R. Izquierdo, and D. Ma, Adv. Funct. Mater. 21(21), 4010 (2011).
http://dx.doi.org/10.1002/adfm.201100824
13.
13.P. Niu, G. Liu, and H. M. Cheng, J. Phys. Chem. C 116(20), 11013 (2012).
http://dx.doi.org/10.1021/jp301026y
14.
14.A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc. 121(49), 11459 (1999).
http://dx.doi.org/10.1021/ja992541y
15.
15.J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, and T. Shishido, Chem. Phys. Lett. 356(3–4), 221 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00254-3
16.
16.R. Konta, H. Kato, H. Kobayashi, and A. Kudo, Phys. Chem. Chem. Phys. 5(14), 3061 (2003).
http://dx.doi.org/10.1039/b300179b
17.
17.D. Wang, Z. Zou, and J. Ye, Catal. Today 93–95, 891 (2004).
http://dx.doi.org/10.1016/j.cattod.2004.06.090
18.
18.D. Wang, J. Tang, Z. Zou, and J. Ye, Chem. Mater. 17(20), 5177 (2005).
http://dx.doi.org/10.1021/cm051016x
19.
19.P. Li, N. Umezawa, H. Abe, and J. Ye, J. Mater. Chem. A 3, 10720 (2015).
http://dx.doi.org/10.1039/C5TA01416F
20.
20.T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, J. Phys. Chem. C 114(11), 5160 (2010).
http://dx.doi.org/10.1021/jp910884c
21.
21.G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
22.
22.G. Kresse and J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
23.
23.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
24.
24.M. A. Butler, J. Appl. Phys. 48(5), 1914 (1977).
http://dx.doi.org/10.1063/1 323948
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4922833 for additional data.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4922833
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4922833
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4922833
2015-06-23
2016-09-27

Abstract

A series of magnesium vanadates (MgV O, Mg V O, and Mg V O) were synthesized to investigate the effect of cation concentration on photocatalytic performance. The samples were characterized by X-ray diffraction, field emission-scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, and fluorescence spectroscopy. The photocatalytic O evolution experiments under visible light irradiation showed Mg V O exhibits the best performance, while Mg V O has the lowest activity. The density functional theory calculations indicated that the lowest unoccupied states of Mg V O are the mostly localized by the cation layers. The fluorescence spectra and fluorescence decay curves gave evident performances of excited states of magnesium vanadates and pointed out MgV O has a very short excited electron lift-time. Mg V O performs high photocatalytic activity because of its high electron mobility and long electron life-time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4922833.html;jsessionid=URjKjE6QOZR68dXFcWlnbWU2.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4922833&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4922833&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4922833'
Top,Right1,Right2,Right3,