Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4923258
1.
1.D. Abbott, Proc. IEEE 98(1), 42 (2010).
http://dx.doi.org/10.1109/JPROC.2009.2035162
2.
2.A. Fujishima, X. Zhang, and D. A. Tryk, Int. J. Hydrogen Energy 32(14), 2664 (2007).
http://dx.doi.org/10.1016/j.ijhydene.2006.09.009
3.
3.J. O’Mara Bockris, Energy, Global Warming and the Future (Nova Publishing Online, New York, NY, USA, 2011).
4.
4.C.-H. Liao, C.-W. Huang, and J. C. S. Wu, Catalysts 2(4), 490 (2012).
http://dx.doi.org/10.3390/catal2040490
5.
5.J. A. Turner, M. C. Williams, and K. Rajeshwar, Electrochem. Soc. Interface 13(3), 24 (2004).
6.
6.K. Rajeshwar, R. McConnell, and S. Licht, Solar Hydrogen Generation: Toward a Renewable Energy Future (Springer, 2008).
7.
7.J. R. Bolton, Solar Energy 57(1), 37 (1996).
http://dx.doi.org/10.1016/0038-092X(96)00032-1
8.
8.J. O’Mara Bockris, Materials 4(12), 2073 (2011).
http://dx.doi.org/10.3390/ma4122073
9.
9.P.-T. Chen, C.-L. Sun, and M. Hayashi, J. Phys. Chem. C 114(42), 18228 (2010).
http://dx.doi.org/10.1021/jp106687v
10.
10.K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature 440, 295 (2006).
http://dx.doi.org/10.1038/440295a
11.
11.Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature 414, 625 (2001).
http://dx.doi.org/10.1038/414625a
12.
12.Y. Tachibana, L. Vayssieres, and J. R. Durrant, Nat. Photonics 6(8), 511 (2012).
http://dx.doi.org/10.1038/nphoton.2012.175
13.
13.A. Fujishima and K. Honda, Nature 238(5358), 37 (1972).
http://dx.doi.org/10.1038/238037a0
14.
14.J. R. Bolton, S. J. Strickler, and J. S. Connolly, Nature 316(6028), 495 (1985).
http://dx.doi.org/10.1038/316495a0
15.
15.F. E. Osterloh, Chem. Mater. 20(1), 35 (2008).
http://dx.doi.org/10.1021/cm7024203
16.
16.X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110(11), 6503 (2010).
http://dx.doi.org/10.1021/cr1001645
17.
17.A. Kudo and Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009).
http://dx.doi.org/10.1039/B800489G
18.
18.R. M. Navarro Yerga, M. C. Álvarez Galván, F. del Valle, J. A. V. de la Mano, and J. L. G. Fierro, ChemSusChem 2(6), 471 (2009).
http://dx.doi.org/10.1002/cssc.200900018
19.
19.K. Maeda, J. Photochem. Photobiol., C 12(4), 237 (2011).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.07.001
20.
20.H. Gerischer, J. Electroanal. Chem. Interfacial Electrochem. 82(1–2), 133 (1977).
http://dx.doi.org/10.1016/S0022-0728(77)80253-2
21.
21.K. Maeda, K. Teramura, N. Saito, Y. Inoue, and K. Domen, Bull. Chem. Soc. Jpn. 80(5), 1004 (2007).
http://dx.doi.org/10.1246/bcsj.80.1004
22.
22.M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110(11), 6446 (2010).
http://dx.doi.org/10.1021/cr1002326
23.
23.K. Maeda and K. Domen, J. Phys. Chem. Lett. 1(18), 2655 (2010).
http://dx.doi.org/10.1021/jz1007966
24.
24.J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 93(16), 162107 (2008).
http://dx.doi.org/10.1063/1.3006332
25.
25.M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, ACS Nano 7(9), 7886 (2013).
http://dx.doi.org/10.1021/nn4028823
26.
26.B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, Nano Lett. 13(9), 4356 (2013).
http://dx.doi.org/10.1021/nl402156e
27.
27.P. G. Moses and C. G. Van de Walle, Appl. Phys. Lett. 96(2), 021908 (2010).
http://dx.doi.org/10.1063/1.3291055
28.
28.J. Wu, J. Appl. Phys. 106(1), 011101 (2009).
http://dx.doi.org/10.1063/1.3155798
29.
29.H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y.-J. Kim, and G.-C. Yi, ACS Nano 2(4), 637 (2008).
http://dx.doi.org/10.1021/nn700320y
30.
30.T. Stoica, R. Meijers, R. Calarco, T. Richter, and H. Lüth, J. Cryst. Growth 290(1), 241 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.12.106
31.
31.S. A. Dayeh, E. T. Yu, and D. Wang, Nano Lett. 7(8), 2486 (2007).
http://dx.doi.org/10.1021/nl0712668
32.
32.S. Zhao, S. Fathololoumi, K. H. Bevan, D. P. Liu, M. G. Kibria, Q. Li, G. T. Wang, H. Guo, and Z. Mi, Nano Lett. 12(6), 2877 (2012).
http://dx.doi.org/10.1021/nl300476d
33.
33.M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 5, 3825 (2014).
http://dx.doi.org/10.1038/ncomms4825
34.
34.D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A.-R. Hakima, and Z. Mi, Nano Lett. 11(6), 2353 (2011).
http://dx.doi.org/10.1021/nl2006802
35.
35.H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11(5), 1919 (2011).
http://dx.doi.org/10.1021/nl104536x
36.
36.J. Yang, D. Wang, H. Han, and C. Li, Acc. Chem. Res. 46(8), 1900 (2013).
http://dx.doi.org/10.1021/ar300227e
37.
37.C.-yi Wang, H. Groenzin, and M. J. Shultz, J. Am. Chem. Soc. 126(26), 8094 (2004).
http://dx.doi.org/10.1021/ja048165l
38.
38.J. Schneider and D. W. Bahnemann, J. Phys. Chem. Lett. 4(20), 3479 (2013).
http://dx.doi.org/10.1021/jz4018199
39.
39.T. Kawai and T. Sakata, J. Chem. Soc., Chem. Commun. 1980(15), 694.
http://dx.doi.org/10.1039/c39800000694
40.
40.M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 6, 6797 (2015).
http://dx.doi.org/10.1038/ncomms7797
41.
41.S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, Nano Lett. 13(11), 5509 (2013).
http://dx.doi.org/10.1021/nl4030819
42.
42.S. Zhao, A. T. Connie, M. H. T. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, Sci. Rep. 5, 8332 (2015).
http://dx.doi.org/10.1038/srep08332
43.
43.Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, Nanoscale 6(17), 9970 (2014).
http://dx.doi.org/10.1039/C4NR01608D
44.
44.J. S. Foresi and T. D. Moustakas, Appl. Phys. Lett. 62(22), 2859 (1993).
http://dx.doi.org/10.1063/1.109207
45.
45.L. Ivanova, S. Borisova, H. Eisele, M. Dähne, A. Laubsch, and Ph. Ebert, Appl. Phys. Lett. 93(19), 192110 (2008).
http://dx.doi.org/10.1063/1.3026743
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4923258
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4923258
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4923258
2015-07-01
2016-09-27

Abstract

The performance of photochemical water splitting over the emerging nanostructured photocatalysts is often constrained by their surface electronic properties, which can lead to imbalance in redox reactions, reduced efficiency, and poor stability. We have investigated the impact of surface charge properties on the photocatalytic activity of InGaN nanowires. By optimizing the surface charge properties through controlled p-type dopant (Mg) incorporation, we have demonstrated an apparent quantum efficiency of ∼17.1% and ∼12.3% for InGaN nanowire arrays under visible light irradiation (400 nm–490 nm) in aqueous methanol and in the overall neutral-pH water splitting reaction, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4923258.html;jsessionid=qUXAHQv5JvwCE8TG9u1cWsGz.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4923258&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4923258&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4923258'
Top,Right1,Right2,Right3,