Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4926454
1.
1.P. Guerra, M. Kim, S. Teslic, M. Alaee, and S. Smyth, J. Environ. Manage. 152, 192200 (2015).
http://dx.doi.org/10.1016/j.jenvman.2015.01.044
2.
2.Y. Huang, C. Wong, J. Zheng, H. Bouwman, R. Barra, B. Wahlström, L. Neretin, and M. Wong, Environ. Int. 42, 9199 (2012).
http://dx.doi.org/10.1016/j.envint.2011.04.010
3.
3.L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang, and X. Pan, Chem. Eng. J. 262, 12751283 (2015).
http://dx.doi.org/10.1016/j.cej.2014.10.087
4.
4.N. Lu, Y. Lu, F. Liu, K. Zhao, X. Yuan, Y. Zhao, Y. Li, H. Qin, and J. Zhu, Chemosphere 91(9), 12661272 (2013).
http://dx.doi.org/10.1016/j.chemosphere.2013.02.023
5.
5.P.-S. Yap, T.-T. Lim, M. Lim, and M. Srinivasan, Catal. Today 151(1), 813 (2010).
http://dx.doi.org/10.1016/j.cattod.2010.01.012
6.
6.B. Czech and W. Buda, Environ. Res. 137, 176184 (2015).
http://dx.doi.org/10.1016/j.envres.2014.12.006
7.
7.U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol., C 9(1), 112 (2008).
http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003
8.
8.H. A. Le, S. Chin, and J. Jurng, Powder Technol. 225, 167175 (2012).
http://dx.doi.org/10.1016/j.powtec.2012.04.004
9.
9.B. Elgh, N. Yuan, H. S. Cho, D. Magerl, M. Philipp, S. V. Roth, K. B. Yoon, P. Müller-Buschbaum, O. Terasaki, and A. E. Palmqvist, APL Mater. 2(11), 113313 (2014).
http://dx.doi.org/10.1063/1.4899117
10.
10.L.-L. Tan, W.-J. Ong, S.-P. Chai, and A. R. Mohamed, Nanoscale Res. Lett. 8(1), 465 (2013).
http://dx.doi.org/10.1186/1556-276x-8-465
11.
11.S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P. K. Shukla, C. J. Rupp, S. Chakraborty, R. Ahuja, and J. Popp, RSC Adv. 4(104), 5989059901 (2014).
http://dx.doi.org/10.1039/C4RA10572A
12.
12.J. Yu, Q. Xiang, and M. Zhou, Appl. Catal., B 90(3), 595602 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.04.021
13.
13.J. Fang, L. Yin, S. Cao, Y. Liao, and C. Xue, Beilstein J. Nanotechnol. 5(1), 360364 (2014).
http://dx.doi.org/10.3762/bjnano.5.41
14.
14.L. Guo, D. Jing, M. Liu, Y. Chen, S. Shen, J. Shi, and K. Zhang, Beilstein J. Nanotechnol. 5(1), 9941004 (2014).
http://dx.doi.org/10.3762/bjnano.5.113
15.
15.H. Chen and L. Wang, Beilstein J. Nanotechnol. 5(1), 696710 (2014).
http://dx.doi.org/10.3762/bjnano.5.82
16.
16.K. H. Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, Appl. Surf. Sci. 319, 128135 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.06.153
17.
17.S. Kuriakose, V. Choudhary, B. Satpati, and S. Mohapatra, Beilstein J. Nanotechnol. 5(1), 639650 (2014).
http://dx.doi.org/10.3762/bjnano.5.75
18.
18.K. H. Leong, H. Y. Chu, S. Ibrahim, and P. Saravanan, Beilstein J. Nanotechnol. 6(1), 428437 (2015).
http://dx.doi.org/10.3762/bjnano.6.43
19.
19.M. C. Mathpal, A. K. Tripathi, P. Kumar, R. Balasubramaniyan, M. K. Singh, J. S. Chung, S. H. Hur, and A. Agarwal, Phys. Chem. Chem. Phys. 16(43), 2387423883 (2014).
http://dx.doi.org/10.1039/C4CP02982H
20.
20.D. Wang, X. Li, J. Chen, and X. Tao, Chem. Eng. J. 198, 547554 (2012).
http://dx.doi.org/10.1016/j.cej.2012.04.062
21.
21.N. Zhang, Y. Zhang, and Y.-J. Xu, Nanoscale 4(19), 57925813 (2012).
http://dx.doi.org/10.1039/c2nr31480k
22.
22.Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, and L. Chen, J. Hazard. Mater. 241, 323330 (2012).
http://dx.doi.org/10.1016/j.jhazmat.2012.09.050
23.
23.Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev. 41(2), 782796 (2012).
http://dx.doi.org/10.1039/C1CS15172J
24.
24.Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng, and Y. Wu, Water Res. 67, 330344 (2014).
http://dx.doi.org/10.1016/j.watres.2014.09.026
25.
25.M. S. A. S. Shah, K. Zhang, A. R. Park, K. S. Kim, N.-G. Park, J. H. Park, and P. J. Yoo, Nanoscale 5(11), 50935101 (2013).
http://dx.doi.org/10.1039/c3nr00579h
26.
26.S. Liu, H. Sun, S. Liu, and S. Wang, Chem. Eng. J. 214, 298303 (2013).
http://dx.doi.org/10.1016/j.cej.2012.10.058
27.
27.Y. Wang, Y. Tang, Y. Chen, Y. Li, X. Liu, S. Luo, and C. Liu, J. Mater. Sci. 48(18), 62036211 (2013).
http://dx.doi.org/10.1007/s10853-013-7417-3
28.
28.W. S. Hummers, Jr. and R. E. Offeman, J. Am. Chem. Soc. 80(6), 1339 (1958).
http://dx.doi.org/10.1021/ja01539a017
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4926454 for preparation of GO, schematic preparation of RGO-Ag/TiO2, FESEM and HRTEM images of TiO2 and Ag/TiO2, magnified image of FT-IR and XPS spectra of Ti 2p.[Supplementary Material]
30.
30.K. H. Leong, P. Monash, S. Ibrahim, and P. Saravanan, Sol. Energy 101, 321332 (2014).
http://dx.doi.org/10.1016/j.solener.2014.01.006
31.
31.Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, and J. Wang, J. Mater. Chem. A 2(3), 824832 (2014).
http://dx.doi.org/10.1039/C3TA13985A
32.
32.D. Chen, Q. Chen, L. Ge, L. Yin, B. Fan, H. Wang, H. Lu, H. Xu, R. Zhang, and G. Shao, Appl. Surf. Sci. 284, 921929 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.08.051
33.
33.J. Zhang, Z. Xiong, and X. Zhao, J. Mater. Chem. 21(11), 36343640 (2011).
http://dx.doi.org/10.1039/c0jm03827j
34.
34.W.-S. Wang, D.-H. Wang, W.-G. Qu, L.-Q. Lu, and A.-W. Xu, J. Phys. Chem. C 116(37), 1989319901 (2012).
http://dx.doi.org/10.1021/jp306498b
35.
35.C. Zeng, M. Guo, B. Tian, and J. Zhang, Chem. Phys. Lett. 575, 8185 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.05.007
36.
36.J. Yang, C. Tian, L. Wang, and H. Fu, J. Mater. Chem. 21(10), 33843390 (2011).
http://dx.doi.org/10.1039/c0jm03361h
37.
37.M. Zhu, P. Chen, and M. Liu, ACS Nano 5(6), 45294536 (2011).
http://dx.doi.org/10.1021/nn200088x
38.
38.L. C. Sim, K. H. Leong, S. Ibrahim, and P. Saravanan, J. Mater. Chem. A 2(15), 53155322 (2014).
http://dx.doi.org/10.1039/C3TA14857B
39.
39.Y. Liu, K. Chen, M. Xiong, P. Zhou, Z. Peng, G. Yang, Y. Cheng, R. Wang, and W. Chen, RSC Adv. 4(82), 4376043765 (2014).
http://dx.doi.org/10.1039/C4RA05681G
40.
40.H. Zhang, X. Fan, X. Quan, S. Chen, and H. Yu, Environ. Sci. Technol. 45(13), 57315736 (2011).
http://dx.doi.org/10.1021/es2002919
41.
41.Y. Yang, E. Liu, H. Dai, L. Kang, H. Wu, J. Fan, X. Hu, and H. Liu, Int. J. Hydrogen Energy 39(15), 76647671 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2013.09.109
42.
42.W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, Appl. Catal., B 69(3), 138144 (2007).
http://dx.doi.org/10.1016/j.apcatb.2006.06.015
43.
43.Y. Wen, H. Ding, and Y. Shan, Nanoscale 3(10), 44114417 (2011).
http://dx.doi.org/10.1039/c1nr10604j
44.
44.P. Wang, Y. Tang, Z. Dong, Z. Chen, and T.-T. Lim, J. Mater. Chem. A 1(15), 47184727 (2013).
http://dx.doi.org/10.1039/c3ta01042b
45.
45.F. Dong, H. Wang, and Z. Wu, J. Phys. Chem. C 113(38), 1671716723 (2009).
http://dx.doi.org/10.1021/jp9049654
46.
46.S. K. Bhunia and N. R. Jana, ACS Appl. Mater. Interfaces 6(22), 2008520092 (2014).
http://dx.doi.org/10.1021/am505677x
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4926454
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4926454
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4926454
2015-07-21
2016-07-26

Abstract

A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4926454.html;jsessionid=ZqsQ2xbRNmJy6b2XpdYET9cb.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4926454&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4926454&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4926454'
Right1,Right2,Right3,