Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4928288
1.
1.F. E. Osterloh, Chem. Mater. 20, 35 (2008).
http://dx.doi.org/10.1021/cm7024203
2.
2.S. T. Martin, A. T. Lee, and M. R. Hoffmann, Environ. Sci. Technol. 29, 2567 (1995).
http://dx.doi.org/10.1021/es00010a017
3.
3.A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
http://dx.doi.org/10.1039/B800489G
4.
4.X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
http://dx.doi.org/10.1021/cr1001645
5.
5.J. Soldat, R. Marschall, and M. Wark, Chem. Sci. 5, 3746 (2014).
http://dx.doi.org/10.1039/C4SC01127A
6.
6.P. Wang, P. Chen, A. Kostka, R. Marschall, and M. Wark, Chem. Mater. 25, 4739 (2013).
http://dx.doi.org/10.1021/cm402708h
7.
7.R. Marschall, Adv. Funct. Mater. 24, 2421 (2014).
http://dx.doi.org/10.1002/adfm.201303214
8.
8.K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, J. Phys. Chem. 90, 292 (1986).
http://dx.doi.org/10.1021/j100274a018
9.
9.X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, and C. Li, Angew. Chem., Int. Ed. 51, 13089 (2012).
http://dx.doi.org/10.1002/anie.201207554
10.
10.C. P. Li, A. Proctor, and D. M. Hercules, Appl. Spectrosc. 38, 880 (1984).
http://dx.doi.org/10.1366/0003702844554530
11.
11.M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. S. C. Smart, Surf. Interface Anal. 41, 324 (2009).
http://dx.doi.org/10.1002/sia.3026
12.
12.Y. C. Chiou, U. Kumar, and J. C. S. Wu, Appl. Catal., A 357, 73 (2009).
http://dx.doi.org/10.1016/j.apcata.2009.01.016
13.
13.T. K. Townsend, N. D. Browning, and F. E. Osterloh, ACS Nano 6, 7420 (2012).
http://dx.doi.org/10.1021/nn302647u
14.
14.P. Wang, L. Schwertmann, R. Marschall, and M. Wark, J. Mater. Chem. A. 2, 8815 (2014).
http://dx.doi.org/10.1039/c4ta01393j
15.
15.N. Zhang, S. Q. Liu, and Y. J. Xu, Nanoscale 4, 2227 (2012).
http://dx.doi.org/10.1039/c2nr00009a
16.
16.A. Galinska and J. Walendziewski, Energy Fuels 19, 1143 (2005).
http://dx.doi.org/10.1021/ef0400619
17.
17.H. Kato and A. Kudo, Chem. Lett. 28, 1207 (1999).
http://dx.doi.org/10.1246/cl.1999.1207
18.
18.S. Ikeda, M. Fubuki, Y. K. Takahara, and M. Matsumura, Appl. Catal., A 300, 186 (2006).
http://dx.doi.org/10.1016/j.apcata.2005.11.007
19.
19.Y. K. Kho, A. Iwase, W. Y. Teoh, L. Mädler, A. Kudo, and R. Amal, J. Phys. Chem. C 114, 2821 (2010).
http://dx.doi.org/10.1021/jp910810r
20.
20.C. Hatchard and C. A. Parker, Proc. R. Soc. A 235, 518 (1956).
http://dx.doi.org/10.1098/rspa.1956.0102
21.
21.A. Hameed and M. A. Gondal, J. Mol. Catal. A: Chem. 233, 35 (2005).
http://dx.doi.org/10.1016/j.molcata.2005.02.009
22.
22.T. Kawai and T. Sakata, J. Chem. Soc., Chem. Commun. 1980, 694.
http://dx.doi.org/10.1039/c39800000694
23.
23.R. M. Navarro, M. C. Sanchez-Sanchez, M. C. Alvarez-Galvan, F. del Valle, and J. L. G. Fierro, Energy Environ. Sci. 2, 35 (2009).
http://dx.doi.org/10.1039/B808138G
24.
24.T. Kawai and T. Sakata, Nature 286, 474 (1980).
http://dx.doi.org/10.1038/286474a0
25.
25.T. Sakata and T. Kawai, New J. Chem. 5, 279 (1981).
26.
26.T. Kawai and T. Sakata, Chem. Lett. 10, 81 (1981).
http://dx.doi.org/10.1246/cl.1981.81
27.
27.K. Hashimoto, T. Kawai, and T. Sakata, J. Phys. Chem. 88, 4083 (1984).
http://dx.doi.org/10.1021/j150662a046
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4928288
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4928288
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4928288
2015-08-07
2016-12-11

Abstract

The photocatalytic properties of different calcium tantalate nanocomposite photocatalysts with optimized phase composition were studied without the addition of any co-catalysts in the photoreforming of different alcohols including the biomass conversion by-product glycerol, as well as after modification with double-layered NiO (Ni/NiO) co-catalyst in overall water splitting (OWS). Nanocomposite photocatalyst consisting of cubic α-CaTaO/orthorhombic β-CaTaO coexisting phases always possesses the highest photocatalytic performance. For overall water splitting, a loading of 0.5 wt. % NiO exhibits the best activities with stable stoichiometric H and O evolution rates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4928288.html;jsessionid=kYkFELXKJkfqVuVqx5qWF0pU.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4928288&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4928288&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4928288'
Top,Right1,Right2,Right3,