Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Fujishima and K. Honda, Nature 238, 37 (1972).
2.Y. Peng, L. Shang, T. Bian, Y. F. Zhao, C. Zhou, H. J. Yu, L. Z. Wu, C.-H. Tung, and T. R. Zhang, Chem. Commun. 51, 46774680 (2015).
3.L. K. Pan, X. J. Liu, Z. Sun, and C. Q. Sun, J. Mater. Chem. A 1, 82998326 (2013).
4.Q. Wan, T. H. Wang, and J. C. Zhao, Appl. Phys. Lett. 87, 083105 (2005).
5.N. Zhang, Y. H. Zhang, and Y. J. Xu, Nanoscale 4, 57925813 (2012).
6.L. Wang, Z. Y. Nie, C. B. Cao, M. W. Ji, L. Zhou, and X. Feng, J. Mater. Chem. A 3, 37103718 (2015).
7.Y. Q. Li, Z. Y. Wang, B. B. Huanga, and Y. Dai, Appl. Surf. Sci. 347, 258264 (2015).
8.G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q. Lu, and H.-M. Cheng, J. Am. Chem. Soc. 131(36), 1286812869 (2009).
9.H. J. Dong, J. X. Sun, G. Chen, C. M. Li, Y. D. Hu, and C. D. Lv, Phys. Chem. Chem. Phys. 16, 2391523921 (2014).
10.Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559563 (2010).
11.R. Konta, H. Kato, H. Kobayashi, and A. Kudo, Phys. Chem. Chem. Phys. 5, 30613065 (2003).
12.J. G. Yu, G. P. Dai, and B. B. Huang, J. Phys. Chem. C 113(37), 1639416401 (2009).
13.S. X. Ouyang, Z. S. Li, Z. Ouyang, T. Yu, J. H. Ye, and Z. G. Zou, J. Phys. Chem. C 112(8), 31343141 (2008).
14.H. J. Dong, G. Chen, J. X. Sun, C. M. Li, Y. G. Yu, and D. H. Chen, Appl. Catal., B 134–135, 4654 (2013).
15.P. Wang, B. B. Huang, X. Y. Qin, Y. Dai, J. Y. Wei, and M.-H. Whangbo, Angew. Chem., Int. Ed. 47, 79317933 (2008).
16.P. Wang, B. B. Huang, X. Y. Zhang, H. Jin, Y. Dai, Z. Y. Wang et al., Chem.–Eur. J. 15, 18211824 (2009).
17.Z. F. Zheng, C. Chen, A. Bo, F. S. Zavahir, E. R. Waclawik, J. Zhao, D. J. Yang, and H. Y. Zhu, ChemCatChem 6, 12101214 (2014).
18.Y. P. Bi, S. X. Ouyang, N. Umezawa, J. Y. Cao, and J. H. Ye, J. Am. Chem. Soc. 133, 64906492 (2011).
19.G. P. Dai, J. G. Yu, and G. Liu, J. Phys. Chem. C 116, 1551915524 (2012).
20.J. T. Tang, Y. H. Liu, H. Z. Li, Z. Tan, and D. T. Li, Chem. Commun. 49, 54985500 (2013).
21.W. J. Wang, B. B. Huang, X. C. Ma, Z. Y. Wang, Y. Dai, M. H. Whangbo et al., Chem.–Eur. J. 19, 14777 (2013).
22.R. Zhang, Y. Dai, Z. Z. Lou, Z. J. Li, b. Z. Y. Wang, X. Y. Qin, and B. B. Huang, CrystEngComm 14(16), 49314934 (2014).
23.Z. Z. Lou, B. B. Huang, Z. Y. Wang, X. C. Ma, X. Y. Zhang, Y. Dai, M. H. Whangbo et al., Chem. Mater. 26, 38733875 (2014).
24.T.-G. Kim, D.-H. Yeon, T. Kim, J. Lee, and S.-J. Im, Appl. Phys. Lett. 103, 043904 (2013).
25.See supplementary material at for more details of experiment and calculation results.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Ag (SiO)NO was prepared by a reactive flux method. The structures, morphologies, and light absorption properties were investigated. Owing to the polar crystal structure, an internal electric field can be formed inside the material, which can facilitate the photogenerated charge separation during the photocatalytic process. Based on both the wide light absorption spectra and high charge separation efficiency originated from the polarized internal electric field, Ag (SiO)NO exhibit higher efficiency over Ag PO during the degradation of organic dyes under visible light irradiation, which is expected to be a potential material for solar energy harvest and conversion.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd